東京大学 マイクロ・ナノ多機能デバイス連携研究機構 北森グループ

論文・解説・書籍・特許等

2023

  1. Nanofluidic analytical system integrated with nanochannel open/close valves for enzyme-linked immunosorbent assay
    Hiroki Sano, Yutaka Kazoe, Ryoichi Ohta, Hisashi Shimizu, Kyojiro Morikawa and Takehiko Kitamori
    Lab on a Chip, 23, 727-736 (2023)
  2. Enzyme-linked immunosorbent assay using thin-layered microfluidics with perfect capture of the target protein
    Adelina Smirnova, Ryoichi Ohta, Emi Mori, Hisashi Shimizu, Kyojiro Morikawa and Takehiko Kitamori
    Analytical Method, 15, 675-684 (2023)
  3. Stability of enzyme immobilized on the nanofluidic channel surface
    Koki Yamamoto, Kyojiro Morikawa, Chihchen Chen, Takehiko Kitamori
    Analytical Sciences, 39, 251-255 (2023). selected as Analytical Sciences Hot Articles 2023
  4. Fused silica microchannel fabrication with smooth surface and high etching selectivity
    Kyojiro Morikawa, Po-yin Chen, Hai Linh Tran, Yutaka Kazoe, Chihchen Chen and Takehiko Kitamori
    Journal of Micromechanics and Microengineering, 33, 047001 (2023)
  5. Quantitative characterization of liquids flowing in geometrically-controlled sub-100 nm nanofluidic channels
    Yutaka Kazoe, Keisuke Ikeda, Kensuke Mino, Kyojiro Morikawa, Kazuma Mawatari, Takehiko Kitamori
    Analytical Sciences, 39, 779-784, (2023). selected as Analytical Sciences Hot Articles 2023
  6. Nanofluidic gas/liquid switching utilizing a nanochannel open/close valve based on glass deformation
    Hiroki Sano, Yutaka Kazoe, Kyojiro Morikawa and Takehiko Kitamori
    Journal of Micromechanics and Microengineering, 33, 085007, (2023)
  7. Room-temperature bonding of glass chips via PTFE-assisted plasma modification for nanofluidic applications
    Qiushi Kang , Chenxi Wang , Kaimeng Liu and Takehiko Kitamori
    Lab on a Chip, 23, 2710-2719, (2023)

2022

  1. Characterization of Pressure-Driven Water Flows in Nanofluidic Channels by Mass Flowmetry
    Yutaka Kazoe, Sho Kubori, Kyojiro Morikawa, Kazuma Mawatari, and Takehiko Kitamori
    Analytical Science, 38, 281–287 (2022). selected as Analytical Sciences Hot Articles 2022
  2. Picoliter liquid handling at gas/liquid interface by surface and geometry control in a micro-nanofluidic device
    Kyojiro Morikawa, Shin-ichi Murata, Yutaka Kazoe, Kazuma Mawatari, Takehiko Kitamori,
    Journal of Micromechanics and Microengineering, 32, 024001 (7pp), (2022)
  3. Water structure in 100 nm nanochannels revealed by nano X-ray diffractometry and Raman spectroscopy
    Jun Shirai, Koji Yoshida, Hiroki Koreeda, Takehiko Kitamori, Toshio Yamaguchi, Kazuma Mawatari
    Journal of Molecular Liquids, 350, 118567, (2022)
  4. Accelerated protein digestion and separation with picoliter volume utilizing nanofluidics
    Koki Yamamoto, Kyojiro Morikawa, Hisashi Shimizu, Hiroki Sano, Yutaka Kazoe, Takehiko Kitamori
    Lab on a Chip, 22, 1162-1170, (2022). selected as Lab on a Chip HOT Articles 2022
  5. Picoliter liquid operations in nanofluidic channel utilizing an open/close valve with nanoscale curved structure mimicking glass deflection
    Hiroki Sano, Yutaka Kazoe, Kyojiro Morikawa and Takehiko Kitamori
    Journal of Micromechanics and Microengineering, 32, 055009(11pp), (2022)
  6. Femtoliter-Droplet Mass Spectrometry Interface Utilizing Nanofluidics for Ultrasmall and High-Sensitivity Analysis
    Yuto Takagi, Yutaka Kazoe, Kyojiro Morikawa, and Takehiko Kitamori
    Analytical Chemistry, 94, 10074-10081 (2022)
  7. Proton diffusion and hydrolysis enzymatic reaction in 100 nm scale biomimetic nanochannels
    Takashi Saruko, Kyojiro Morikawa, Takehiko Kitamori, Kazuma Mawatari
    Biomicrofluidics, 16, 044109 (2022)
  8. Kinetics of Enzymatic Reactions at the Solid/Liquid Interface in Nanofluidic Channels
    Koki Yamamoto, Kyojiro Morikawa, Hiroyuki Imanaka, Koreyoshi Imamura, Takehiko Kitamori
    Analytical Chemistry, 94, 15686−15694, (2022)

2021

  1. Super-Resolution Defocusing Nano-Particle Image Velocimetry Utilizing Spherical Aberration for Nanochannel Flows
    Yutaka Kazoe, Kazuki Shibata, Takehiko Kitamori
    Analytical Chemistry, 93 (39), 13260–13267, (2021)
  2. B cell depletion inhibits fibrosis via suppressing pro-fibrotic macrophage differentiation in a mouse model of systemic sclerosis
    Hiroko Numajiri, Ai Kuzumi, Takemichi Fukasawa, Satoshi Ebata, Asako Yoshizaki-Ogawa, Yoshihide Asano, Yutaka Kazoe, Kazuma Mawatari, Takehiko Kitamori, Ayumi Yoshizaki, Shinichi Sato
    Arthritis & Rheumatology, 73(11), 2086–2095, (2021)
  3. Nano-bubble Valve
    Shun Furukawa, Kazuma Mawatari, Yoshiyuki Tsuyama, Kyojiro Morikawa and Takehiko Kitamori
    Microfluidics and Nanofluidics, 25, 24(8pp), (2021)
  4. Isotope Effect in the Liquid Properties of Water Confined in 100 nm Nanofluidic Channels
    Kazuma Mawatari, Kohei Isogai, Kyojiro Morikawa, Hiroshi Ushiyama, Takehiko Kitamori
    The Journal of Physical Chemistry B, 125, 3178-3183, (2021)
  5. Development of microfluidic droplet shooter and its application to interface for mass spectrometry
    Yutaka Kazoe, Yusuke Shimizu, Kyojiro Morikawa, Yasushi Terui, Takashi Irie, Takehiko Kitamori
    Sensors and Actuators: B, 340, 129957(9pp), (2021)
  6. Numerical Modeling of Photothermal Effect in Nanofluidic Channel
    Hisashi  Shimizu and Takehiko Kitamori
    Microfluidics and Nanofluidics, 25, 60 (2021)
  7. Generation of Femtoliter Liquid Droplets in Gas Phase by Microfluidic Droplet Shooter
    Yuto Takagi, Yutaka Kaoze, and Takehiko Kitamori
    Microfluidics and Nanofluidics, 25, 74(8pp) (2021)
  8. Metal-free Fabrication of Fused Silica Extended Nanofluidic Channel to Remove Artifacts in Chemical Analysis
    Kyojiro Morikawa, Ryoichi Ohta, Kazuma Mawatari, and Takehiko Kitamori
    Micromachines, 12, 917(10pp) (2021)
  9. Interleukin-31 promotes fibrosis and T helper 2 polarization in systemic sclerosis
    Ai Kuzumi, Ayumi Yoshizaki, Kazuki Matsuda, Hirohito Kotani, Yuta Norimatsu, Maiko Fukayama, Satoshi Ebata, Takemichi Fukasawa, Asako Yoshizaki-Ogawa, Yoshihide Asano, Kyojiro Morikawa, Yutaka Kazoe, Kazuma Mawatari, Takehiko Kitamori, and Shinichi Sato
    Nature Communications, 12, 5947(18pp), (2021)
  10. Surface Patterning of Closed Nanochannel Using VUV Light and Surface Evaluation by Streaming Current
    Kyojiro Morikawa, Haruki Kazumi , Yoshiyuki Tsuyama, Ryoichi Ohta and Takehiko Kitamori
    Micromachines, 12, 1367(11pp), (2021)
  11. Stable Formation of aqueous/organic parallel two-phase flow in nanochannels with partial surface modification
    Hiroki Sano, Yutaka Kazoe, and Takehiko Kitamori
    Analytical Science, 37,1611-1616,(2021)
  12. Single-cell-level protein analysis revealing the roles of autoantigen-reactive B lymphocytes in autoimmune disease and the murine model
    Takemichi Fukasawa, Ayumi Yoshizaki, Satoshi Ebata, Asako Yoshizaki-Ogawa, Yoshihide Asano, Atsushi Enomoto, Kiyoshi Miyagawa, Yutaka Kazoe, Kazuma Mawatari, Takehiko Kitamori, Shinichi Sato
    eLife, 10, e67209 (21pp) (2021)

2020

  1. Femtoliter Volumetric Pipette and Flask Utilizing Nanofluidics
    Tatsuro Nakao, Yutaka Kazoe, Kyojiro Morikawa, Ling Lin, Kazuma
    Mawatari, and Takehiko Kitamori
    Analyst145, 2669 – 2675 (2020)
  2.  Ultrasensitive detection of nonlabelled bovine serum albumin using photothermal optical phase shift detection with UV excitation
    Hisashi Shimizu, Sigenori Takeda, Kazuma Mawatari, Takehiko Kitamori
    Analyst, 145, 2580-2585 (2020)
  3. Picoliter enzyme reactor on a nanofluidic device exceeding the bulk reaction rate
    Koki Yamamoto, Kyojiro Morikawa, Hiroyoki Imanaka, Koreyoshi Imamura, Takehiko Kitamori
    Analyst, 145, 5801-5807, (2020)
  4. Lipid Bilayer-Modified Nanofluidic Channels of Sizes with Hundreds of Nanometers for Characterization of Confined Water and Molecular/Ion Transport
    Yutaka Kazoe, Kazuma Mawatari, Lixiao Li, Hisaki Emon, Naoya Miyawaki, Hiroyuki Chinen, Kyojiro Morikawa, Ayumi Yoshizaki, Petra S. Dittrich, Takehiko Kitamori
    The Journal of Physical Chemistry Letters, 11, 5756-5762 (2020)
  5. Implementation of a Nanochannel Open/Close Valve into a Glass Nanofluidic Device
    Hiroki Sano, Yutaka Kazoe, Kyojiro Morikawa, and Takehiko Kitamori
    Microfluidics and Nanofluidics, 24, 78(11pp), (2020)
  6. Advanced Top-Down Fabrication for a Fused Silica Nanofluidic Device
    Kyojiro Morikawa, Yutaka Kazoe, Yuto Takagi, Yoshiyuki Tsuyama, Yuriy Pihosh, Takehiko Tsukahara, Takehiko Kitamori
    Micromachines, 11, 995(11pp), (2020)
  7. Fabrication of Infrared-Compatible Nanofluidic Devices for Plasmon-Enhanced Infrared Absorption Spectroscopy
    Thu Hac Huong Le, Takumi Matsushita, Ryoichi Ohta, Yuta Shimoda, Hiroaki Matsui and Takehiko Kitamori
    Micromachines, 11, 1062(11pp), (2020)
  8. Conversion Reaction in the Binder-Free Anode for Fast-Charging Li-Ion Batteries Based on WO3 Nanorods
    Raman Bekarevich, Yuriy Pihosh, Yoshinori Tanaka, Kei Nishikawa, Yoshitaka Matsushita, Takanobu Hiroto, Hirohito Ohata, Takahisa Ohno, Tsutomu Minegishi, Masakazu Sugiyama, Takehiko Kitamori, Kazutaka Mitsuishi, and Kazunori Takada
    ACS Appl. Energy Mater., 3, 7, 6700–6708 (2020)
  9. Fabrication of Infrared-Compatible Nanofluidic Devices for Plasmon-Enhanced Infrared Absorption Spectroscopy
    Thu Hac Huong Le, Takumi Matsushita, Ryoichi Ohta, Yuta Shimoda, Hiroaki Matsui and Takehiko Kitamori
    Micromachines, 11, 1062(11pp), (2020)

2019

  1. Cytokine analysis at countable number of molecules from living single cells on nanofluidic devices
    Tatsuro Nakao, Yutaka Kazoe, Emi Mori, Kyojiro Morikawa, Takemichi Fukasawa, Ayumi Yoshizaki and Takehiko Kitamori
    Analyst, 144, 7200-7208 (2019)
  2. Femtoliter Gradient Elution System for Liquid Chromatography Utilizing Extended-Nano Fluidics
    Hisashi Shimizu, Kouto Toyoda, Kazuma Mawatari, Shigeru Terabe, and Takehiko Kitamori
    Analytical Chemistry, 91, 3009-3014 (2019)
  3. Detachable glass micro/nanofluidic device
    Ryoichi Ohta, Kazuma Mawatari, Tomoaki Takeuchi, Kyojiro Morikawa, and Takehiko Kitamori
    Biomicrofluidics, 13, 024104(2019)
  4. Femto-liter Nanofluidic Valve Utilizing Glass Deformation
    Yutaka Kazoe, Yuriy Pihosh, Hitomi Takahashi, Takeshi Ohyama, Hiroki Sano, Kyojiro Morikawa, Kazuma Mawatari, Takehiko Kitamori
    Lab on a Chip, 19, 1686-1694(2019)
  5. Ferroelectric Extended Nanofluidic Channels for Room-Temperature Microfuel Cells
    Yuriy Pihosh, Yutaka Kazoe, Kazuma Mawatari, Hangyeol Seo, Osamu Tabata,  Toshiyuki Tsuchiya, Kenji Kitamura, Masahiro Tosa, Ivan Turkevych, and Takehiko Kitamori
    Advanced Materials Technologies, 1900252(2019)
  6. Parallel multiphase nanofluidics utilizing nanochannels with partial hydrophobic surface modification and application to femtoliter solvent extraction
    Yutaka Kazoe, Takuya Ugajin, Ryoichi Ohta, Kazuma Mawatari and Takehiko Kitamori Lab on a Chip, 19, 3844 – 3852 (2019)
  7. Enzyme-Linked Immunosorbent Assay Utilizing Thin-Layered Microfluidics
    Tatsuro Nakao, Kazuma Mawatari, Yutaka Kazoe, Emi Mori, Hisashi Shimizu and Takehiko Kitamori Analyst, 144, 6625 – 6634 (2019)

2018

  1. Single-Molecule ELISA Device utilizing Nanofluidics
    Kentaro Shirai, Kazuma Mawatari, Ryoichi Ohta, Hisashi Shimizu, Takehiko Kitamori
    Analyst(cover), 143, 943-948(2018)
  2. Nano X-ray diffractometry device for nanofluidics
    Kazuma Mawatari,Hiroki Koreeda,Koji Ohara,Shinji Kohara,Koji Yoshida,Toshio Yamaguchi,and Takehiko Kitamori
    Lab on a Chip, 18,1259-1264(2018)
  3. Time resolution effect on the apparent particle dynamics confined in a nanochannel evaluated by the single particle tracking subject to Brownian motion
    Itsuo Hanasaki, Yutaka Kazoe, Takehiko Kitamori
    Microfluidics and Nanofluidics, 22,56(2018)
  4. Metamaterials-Enhanced Infrared Spectroscopic Study of Nanoconfined Molecules by Plasmonics-Nanofluidics Hydrid Device
    Le Thu, Morita Akihiro, Mawatari Kazuma, Kitamori Takehiko, Tanaka Takuo
    ACS photonics, 5(8),3179-3188(2018)
  5. Transport of a Micro Liquid Plug in a Gas-Phase Flow in a Microchannel
    Yutaka Kazoe, Takumi Matsuno, Ippei Yamashiro, Kazuma Mawatari, and Takehiko Kitamori
    Micromachines, 9,423(2018)
  6. Rapid alteration of serum interleukin-6 levels may predict the reactivity of i.v. cyclophosphamide pulse therapy in systemic sclerosis-associated interstitial lung disease
    Hiroko Numajiri, Ayumi Yoshizaki, Takemichi Fukazawa, Satoshi Ebata, Kouki Nakamura, Takashi Yamashita, Ryosuke Saigusa, Shunsuke Miura, Megumi Hirabayashi, Asako Yoshizaki, Hayakazu Sumida, Yoshihide Asano, Yutaka Kazoe, Kazuma Mawatari, Takehiko Kitamori, Shinichi Sato
     The Journal of Dermatology, 45, 1221-1224, (2018).

2017

  1. Micro heat pipe device utilizing extended nanofluidics
    Chenxi Wang, Yutaka Kazoe, Kyojiro Morikawa, Hisashi Shimizu, Yuriy Pihosh, Kazuma Mawatari and Takehiko Kitamori
    RSC Adv., 7,50591-505597(2017)
  2. From Extended-Nano Fluidics to an Autonomous Solar Light Driven Micro Fuel Cell Device
    Yuriy Pihosh, Jin Uemura, Ivan Turkevych, Kazuma Mawatari, Yutaka Kazoe, Adelina Smirnova and Takehiko Kitamori
    Angew. Chem. Int. Ed., 56,8130-8133(2017)
  3. Thermo-Optical Characterization of Photothermal Optical Phase Shift Detection in Extended-Nano Channels and UV Detection of Biomolecules
    Hisashi Shimizu, Naoya Miyawaki, Yoshihiro Asano, Kazuma Mawatari, and Takehiko Kitamori
    Anal. Chem., 89(11),6043–6049(2017)
  4. Sensitive and rapid assay of BNP in patient blood by micro-ELISA
    Emi Mori, Toshinori Oohashi, Hisashi Imai, Kazuma Mawatari, and Takehiko Kitamori
    Analytical method, 9,2830-2834(2017)
  5. Micro/extended-nano Sampling Interface from Living Single Cell
    L. Lin, K. Mawatari, K. Morikawa, Y. Pihosh, A. Yoshizaki, T. Kitamori
    Analyst, 142,1689-1696(2017)
  6. Clogging-Free Irreversible Bonding of Polycarbonate Membranes to Glass Microfluidic Devices
    Chenxi Wang, Xiaofang Gao, Kazuma Mawatari, and Takehiko Kitamori
    Journal of The Electrochemical Society, 164,B3087-B3090(2017)
  7. A Photothermal Spectrometer for Fast and Background-Free Detection of Individual Nanoparticles in Flow
    Richard M. Maceiczyk, Hisashi Shimizu, David Müller, Takehiko Kitamori, and Andrew J. deMello
    Anal. Chem., 89,1994-1999(2017)
  8. Contribution of Soluble forms of programmed death 1 and programmed death ligand 2 to disease severity and progression in systemic sclerosis
    Takemichi Fukazawa, Ayumi Yoshizaki, Satoshi Ebata, Kouki Nakamura, Ryosuke Saigusa, Syunsuke Miura, Takashi Yamashita, Megumi Hirabayashi, Yohei Ichimura, Takashi Taniguchi, Yoshihide Asano, Hisashi Shimizu, Yutaka Kazoe, Kazuma Mawatari, Takehiko Kitamori, Shinichi Sato
     Arthritis & Rhueumatology, 69, 1879-1890, (2017).

2016

  1. An Easy-to-Use Polystyrene Microchip-based Cell Culture System
    H. Tazawa, S. Sunaoshi, M. Tokeshi, T. Kitamori, R. Ohtani-Kaneko
    Anal Sci., 32,349-353(2016)
  2. Cell sheet mechanics: how geometrical constraints induce the detachment of cell sheets from concave surfaces
    Tadahiro Yamashita, Philip Kollmannsberger, Kazuma Mawatari, Takehiko Kitamori*, Viola Vogel*
    (* Corresponding authors)
    Acta Biomaterialia, 45,85-97(2016)
  3. Low-temperature bonding process for the fabrication of hybrid glass–membrane organ-on-a-chip devices
    Kyall J. Pocock ; Xiaofang Gao ; Chenxi Wang ; Craig Priest ; Clive A. Prestidge ; Kazuma Mawatari ; Takehiko Kitamori ; Benjamin Thierry
    Journal of Micro/Nanolithography, MEMS, and MOEMS, 15(4),044502(2016,12)
  4. Whole blood analysis using microfluidic plasma separation and enzyme-linked immunosorbent assay devices
    Hisashi Shimizu, Mariko Kumagai, Emi Mori, Kazuma Mawatari, and Takehiko Kitamori
    Analytical Methods, 42,7597-7602(2016,8)
  5. On-Chip Step-Mixing in a T-Nanomixer for Liquid Chromatography in Extended-Nanochannels
    Adelina Smirnova, Hisashi Shimizu, Yuriy Pihosh, Kazuma Mawatari, and Takehiko Kitamori
    Anal. Chem., 88,10059(2016)
  6. High-Pressure Acceleration of Nanoliter Droplets in the Gas Phase in a Microchannel
    Yutaka Kazoe, Ippei Yamashiro, Kazuma Mawatari, Takehiko Kitamori
    Micromachines, 7,142(2016)
  7. Femtoliter High-Performance Liquid Chromatography Using Extended-Nano Channels
    Hisashi Shimizu, Kyojiro Morikawa, Yilin Liu, Adelina Smirnova, Kazuma Mawatari and Takehiko Kitamori
    Analyst, 141, 6068-6072(2016)
  8. Tandem photovoltaic–photoelectrochemical GaAs/InGaAsP–WO3/BiVO4 device for solar hydrogen generation
    Sonya Kosar, Yuriy Pihosh, Ivan Turkevych, Kazuma Mawatari, Jin Uemura, Yutaka Kazoe, Kikuo Makita, Takeyoshi Sugaya, Takuya Matsui, Daisuke Fujita, Masahiro Tosa, Yaroslav M. Struk, Michio Kondo, and Takehiko Kitamori
    Japanese Journal of Applied Physics, 55,04ES01(2016)
  9. An electric generator using living Torpedo electric organs controlled by fluid pressure-based alternative nervous systems
    Yo Tanaka, Shun-ichi Funano, Yohei Nishizawa, Norihiro Kamamichi, Masahiro Nishinaka, Takehiko Kitamori
    Scientific Reports, 6,25899(2016)
  10. Living Single Cell Analysis Platform Utilizing Microchannel, Single Cell Chamber, and Extended-Nano Channel
    L. Lin, K. Mawatari, K. Morikawa, T. Kitamori
    Anal. Sci., 32,75-78(2016)

2015

  1. Reversed-phase Chromatography in an Extended Nanospace: Separating Amino Acids in Short and Long Nanochannels
    Adelina Smirnova, Hisashi Shimizu, Kazuma Mawatari, Takehiko Kitamori
    Anal. Sci., 31(11),1201-1204(2015)
  2. Reversed-phase chromatography in extended-nano space for the separation of amino acids
    Adelina Smirnova, Hisashi Shimizu, Kazuma Mawatari, Takehiko Kitamori
    JOURNAL OF CHROMATOGRAPHY A, 1418,224-227(2015)
  3. Spontaneous Packaging and Hypothermic Storage of Mammalian Cells with a Cell-Membrane-Mimetic Polymer Hydrogel in a Microchip
    Yan Xu, Kazuma Mawatari, Tomohiro Konno, Takehiko Kitamori, Kazuhiko Ishihara
    ACS APPLIED MATERIALS & INTERFACES, 7(41),23089-23097(2015)
  4. Keto-Enol Tautomeric Equilibrium of Acetylacetone Solution Confined in Extended Nanospaces
    Takehiko Tsukahara, Kyosuke Nagaoka, Kyojiro Morikawa, Kazuma Mawatari, Takehiko Kitamori
    J. Phys. Chem. B,119,14750-14755(2015)
  5. Photocatalytic generation of hydrogen by core-shell WO 3 /BiVO 4 nanorods with ultimate water splitting efficiency
    Yuriy Pihosh, Ivan Turkevych, Kazuma Mawatari, Jin Uemura, Yutaka Kazoe, Sonya Kosar, Kikuo Makita, Takeyoshi Sugaya,Takuya Matsui, Daisuke Fujita, Masahiro Tosa, Michio Kondo, and Takehiko Kitamori
    Scientific Reports, 5,11141,1-9(2015)As of December 2016, this paper was selected by Scientific Reports to hilight in marketing campaigns to the scientific community and to receive a complimentary video abstracthttps://www.altmetric.com/details/13555272/video
  6. Behavior of Nanoparticles in Extended Nanospace Measured by Evanescent Wave-Based Particle Velocimetry
    Yutaka Kazoe, Kazuma Mawatari, Takehiko Kitamori
    Analytical Chemistry, 87,,4087-4091(2015)
  7. Dielectric Constant of Liquids Confined in the Extended Nanospace Measured by a Streaming Potential Method
    K. Morikawa, Y. Kazoe, K. Mawatari, T. Tsukahara, T. Kitamori
    Analytical Chemistry, 87(3),1475-1479(2015)

2014

  1. Novel Sub-100 nm Surface Chemical Modification by Optical Near-field Induced Photocatalytic Reaction
    H.H.Le, K.Mawatari, Y.Pihosh, T.Kawazoe, T.Yatsui, M.Ohtsu, T.Kitamori
    Microfluidics and Nanofluidics, 17(4),751-758
  2. Nanostructured WO3/BiVO4 Photoanodes for Efficient Photoelectrochemical Water Splitting
    Y.Pihosh, I. Turkevych, K.Mawatari, T.Asai, T.Hisatomi, J.Uemura, M.Tosa, K.Shimamura, J.Kubota, K.Domen, T.Kitamori
    Small, 10(18),3692-3699(2014)
  3. Ubiquitous Element Approach to Plasmonic Enhanced Photocatalytic Water Splitting: the Case of Ti@TiO2 Core-shell Nanostructure
    Y.Pihosh, I.Turkevych, K.Mawatari, N.Fuukuda, R.Ohta, M.Tosa, K.Shimamura, E. Villora, T. Kitamori
    Nanotechnology, 25(31),315402(2014)
  4. Extended Nanofluidic Immunochemical Reaction with Femtoliter Sample Volumes
    Kentaro Shirai, Kazuma Mawatari, Takehiko Kitamori
    Small, 10(8),1514-1522(2014)
  5. Determination of Cattle Foot-and-Mouth Disease Virus by micro-ELISA system
    Y.Dong, Y. Xu, Z.Liu, Y. Fu, T.Ohashi, K.Mawatari, T.Kitamori
    Anal.Sci., 30(3) ,359-363
    (selected as Hot Article)
  6. A competitive micro fl uidic immunological clenbuterol analysis using a microELISA system
    Q.Chen, J.Liu, S.Wang, L.Zhang, Y.Dong, K.Mawatari, T.Kitamori
    RSC Advances, 4(75),39894-39896(2014)
  7. Detection of zeptomole quantities of nonfluorescent molecules in a 10(1) nm nanochannel by thermal lens microscopy
    H.Le, K.Mawatari, H.Simizu,K.Kitamori
    Analyst, 139(11),2721-2725(2014)
    (selected as Hot Article)
  8. Femtoliter-Scale Separation and Sensitive Detection of Nonfluorescent Samples in an Extended-Nano Fluidic Device
    Hisashi Shimizu, Kazuma Mawatari and Takehiko Kitamori
    Analyst, 139(9),2154-2157(2014)

2013

  1. Evanescent Wave-Based Particle Tracking Velocimetry for Nanochannel Flows
    Yutaka Kazoe, Keizo Iseki, Kazuma Mawatari, Takehiko Kitamori
    Analytical Chemistry, 85,10780-10786(2013)
  2. Numerical Simulation of Proton Distribution with Electric Double Layer in Extended Nanospaces
    Chih-Chang Chang, Yutaka Kazoe, Kyojiro Morikawa, Kazuma Mawatari, Ruey-Jen Yang, Takehiko Kitamori
    Analytical Chemistry, 85,4468-4474(2013).
  3. An active valve incorporated into a microchip using a high strain electroactive polymer
    Yo Tanaka, Tomohiro Fujikawa, Yutaka Kazoe, Takehiko Kitamori
    Sensors and Actuators B: Chemical, 184,163-169(2013)
  4. Bonding of glass nanofluidic chips at room temperature by a one-step surface activation using an O2/CF4 plasma treatment
    Yan Xu, Chenxi Wang, Lixiao Li, Nobuhiro Matsumoto, Kihoon Jang, Yiyang Dong, Kazuma Mawatari, Tadatomo Suga, Takehiko Kitamori
    Lab on a Chip, 13(6),1048-1052(2013)

2012

  1. Femtoliter Droplet Handling in Nanofluidic Channels: A Laplace Nanovalve
    Kazuma Mawatari, Shogo Kubota, Yan Xu, Craig Priest, Rossen Sedev, John Ralston, Takehiko Kitamori
    Analytical Chemistry, 84 (24),10812-10816(2013)
  2. Desktop near-field thermal lens microscope for thermo-optical detection in microfluidics
    Adelina Smirnova, Kazuma Mawatari, and Takehiko Kitamori
    Electrophoresis, 33,2749-2751 (2012)
  3. Reply to the Comment to development of Measurement Technique for Ion Distribution in Extended Nanochannel by Super Resolution-Laser Induced Fluorescence
    Yutaka Kazoe, Chih-Chang Chang, Kazuma Mawatari, and Takehiko Kitamori
    Analytical Chemistry, 84,10855-10855 (2012)
  4. Selective cell capture and analysis using shallow antibody-coated microchannels
    Kihoon Jang, Yo Tanaka, Jun Wakabayashi, Reina Ishii, Sato Kae, Kazuma Mawatari, Mats Nilsson, Takehiko Kitamori
    Biomicrofluidics, 6(4),044117(2012)
  5. Micropatterning of biomolecules on a glass substrate in fused silica microchannels by using photolabile linker-based surface activation
    Kihoon Jang, Yan Xu, Kae Sato, Yo Tanaka, Kazuma Mawatari, Takehiko Kitamori
    Microchimica Acta, 179,49-55(2012)
  6. Fluid Mixing Using AC Electrothermal Flow on Meandering Electrodes in a Microchannel
    Naoki Sasaki, Takehiko Kitamori, Haeng-Boo Kim
    Electrophoresis, 33(17),2668-2673(2012)
  7. Viscosity and Wetting Property of Water Confined in Extended Nanospace Simultaneously Measured from Highly-Pressurized Meniscus Motion
    Lixiao Li, Yutaka Kazoe,Kazuma Mawatari,Yasuhiko Sugii,Takehiko Kitamori
    The Journal of Physical Chemistry Letters, 3,2447-2452(2012)
  8. A Palmtop-Sized Microfluidic Cell Culture System Driven by a Miniaturized Infusion Pump
    N. Sasaki, M. Shinjo, S. Hirakawa, M. Nishinaka, Y. Tanaka, K. Mawatari, T. Kitamori, K. Sato
    Electrophoresis, 33(12),1729-1735(2012)
  9. Direct measurements of the saturated vapor pressure of water confined in extended nanospaces using capillary evaporation phenomena
    T.Tsukahara, T. Maeda, A. Hibara, K. Mawatari, T. Kitamori
    RSC advances, 2,3184-3186(2012)
  10. High Resolution Separation by Pressure-Driven Liquid Chromatography in Meander Extended-Nanochannels
    R. Ishibashi, K.Mawatari, T.Kitamori
    Journal of Chromatography A, 1238,152-155(2012)
  11. Highly efficient and ultra small volume separation by pressure driven liquid chromatography in extended nanochannels
    R. Ishibashi, K.Mawatari, T.Kitamori
    Small, 8(8),1237-1242(2012)
    (IF=7.3)
  12. Low-temperature direct bonding of glass nanofluidic chips using a two-step plasma surface activation process
    Y. Xu, C. Wang, Y. Dong, L. Li, K. Jang, K. Mawatari, T. Suga, T. Kitamori
    Analytical and Bioanalytical Chemistry, 402(3),1011-1018(2012)
  13. Enhancement of Proton Mobility in Extended Nanospace Channels
    H. Chinen, K. Mawatari, P. Yuriy, K. Morikawa, Y. Kazoe, T. Tsukahara, T. Kitamori
    Angew. Chem. Int. Ed., 51(15),3573-3577(2012)
    (selected as VIP)
  14. Shape of the Liquid-Liquid Interface in Micro Counter-Current Flows
    Arata Aota, Akihide Hibara, Yasuhiko Sugii, Takehiko Kitamori
    Analytical Sciences, 28(1),9-12(2012)
  15. Detection of Nonfluorescent Molecules Using Differential Interference Contrast Thermal Lens Microscope for Extended-Nano Channel Chromatography
    Hisashi Shimizu, Kazuma Mawatari, Takehiko Kitamori
    Journal of Separation Science,34,2920-2924(2012)
  16. Development of a Pressure-Driven Injection System for Precisely Time Controlled AttoLiter Sample Injection into Extended Nanochannels
    Ryo Ishibashi, Kazuma Mawatari, Katsuyoshi Takahashi, Takehiko Kitamori
    Journal of Chromatography A, 1228,51-56(2012)

2011

  1. Development of microfluidic platform for single-cell secretion analysis using a direct photoactive cell-attaching method
    Kihoon Jang, Hong Trang Thi Ngo, Yo Tanaka, Yan Xu, Kazuma Mawatari, Takehiko Kitamori
    Analytical Sciences, 27(10), 973(2011)(selected as Hot Articles and Cover illustration)
  2. Microchip-based Plasma Separation from Whole Blood via Axial Migration of Blood Cells
    Arata AOTA, Susumu TAKAHASHI, Kazuma MAWATARI, Yo TANAKA, Yasuhiko SUGII, and Takehiko KITAMORI
    Analytical Sciences, 27(12), 1173(2011)(selected as Hot Articles and Cover illustration)
  3. Optical Near-field Induced Visible Response Photoelectrochemical Water Splitting on Nanorod TiO2
    T. H. H. Le, K. Mawatari, Y. Pihosh, T. Kawazoe, T. Yatsui, M. Ohtsu, M. Tosa, T. Kitamori
    Applied Physics Letters, 99, 213105(2011)
    (selected in Virtual Journal of Nanoscale Science & Technology)
  4. Development of a Measurement Technique for Ion Distribution in an Extended Nanochannel by Super-Resolution-Laser-Induced Fluorescence
    Yutaka Kazoe, Kazuma Mawatari, Yasuhiko Sugii, Takehiko Kitamori
    Analytical Chemistry, 83(21), 8152-8157 (2011)
  5. Basic Structure and Cell Culture Condition of a Bioartificial Renal Tubule on Chip Towards a Cell based Separation Microdevice
    Xiaofang GAO, Yo TANAKA, Yasuhiko SUGII, Kazuma MAWATARI, and Takehiko KITAMORI
    Analytical Sciences, 27(9), 907(2011)
  6. Thermal lens detection device
    Kazuma Mawatari, Toshinori Ohashi,b Tomohiko Ebata, Manabu Tokeshi,Takehiko Kitamori
    Lab on a chip, 11, 2990-2993 (2011)
  7. Establishment of a confluent cardiomyocyte culture in a cylindrical microchannel
    Yo Tanaka, Hiroto Akaike, Yasuhiko Sugii, Takehiko Kitamori
    Analytical Sciences, 27(9), 957-960 (2011)
  8. In situ assembly, regeneration and plasmonic immunosensing of a Au nanorod monolayer in a closed-surface flow channel
    Longhua Guo, Youju Huang, Yoshikuni Kikutani, Yo Tanaka, Takehiko Kitamori, Dong-Hwan Kim
    Lab on a Chip, 11(19), 3299-3304 (2011)
  9. Shift of Isoelectric Point in Extended Nanospace Investigated by Streaming Current Measurement
    K. Morikawa, K. Mawatari, Y. Kazoe, T. Tsukahara, T. Kitamori
    Applied Physics Letters, 99, 123115 (2011)
  10. Experimental investigation of droplet acceleration and collision in the gas phase in a microchannel
    Katsuyoshi Takahashi, Yasuhiko Sugii, Kazuma Mawatari and Takehiko Kitamori
    Lab on a chip, 11 (18), 3098 – 3105 (2011)
  11. Microfludic extraction of cupper from particle-laden solutions
    C.Priest, J.Zhou, R.Sedev, J.Ralston, A.Aota, K.Mawatari, T.Kitamori
    International Journal of Mineral Processing, 98, 168-173 (2011)
  12. Sensitive Gas Analysis System on a Microchip and Application for on-site Monitoring of NH3 in a Clean Room
    S. Hiki, K. Mawatari, A. Aota, M. Saito, T. Kitamori
    Analytical Chemistry, 83 (12), 5017-5022 (2011)
  13. Rapid screening swine foot-and-mouth disease virus using micro-ELISA system
    Y. Dong, Y.Xu, Z. Liu, Y. Fu, T. Ohashi, Y. Tanaka, K. Mawatari, T.Kitamori
    Lab on a Chip, 11, 2153-2155 (2011)
  14. Fluid actuation for a bio-micropump powered by previously frozen cardiomyocytes directly seeded on a diagonally stretched thin membrane
    Yo Tanaka, Yuka Yanagisawa, Takehiko Kitamori
    Sensors and Actuators B, 156(1), 494-498 (2011)(Published on the web: 27th April 2011)
  15. Single-Molecule DNA Patterning and Detection by Padlock Probing and Rolling Circle Amplification in Microchannels for Analysis of Small Sample Volumes
    Yo Tanaka, Hui Xi, Kae Sato, Kazuma Mawatari, Bjorn Renberg, Mats Nilsson, Takehiko Kitamori
    Analytical Chemistry, 83(9), 3352-3357(2011)(Published on the web: 4th April 2011)
  16. Cultivation and recovery of vascular endothelial cells in microchannels of a separable micro-chemical chip
    Tadahiro Yamashita, Yo Tanaka, Naokazu Idota, Kae Sato, Kazuma Mawatari, and Takehiko Kitamori
    Biomaterials, 32, 2459-2465(2011).

2010

  1. Experimental and Theoretical Characterization of an AC Electroosmotic Micromixer
    Naoki Sasaki, Takehiko Kitamori, Haeng-Boo Kim
    Analytical Sciences, 26(7), 815-819 (2010)
  2. Artificial chaperone-assisted refolding in a microchannel
    Etsushi Yamamoto, Satoshi Yamaguchi, Naoki Sasaki, Haeng-Boo Kim, Takehiko Kitamori, Teruyuki Nagamune
    Bioprocess and Biosystems Engineering, 33(1), 171-177 (2010)
  3. Single-cell attachment and culture method using a photochemical reaction in a closed microfluidic system
    Kihoon Jang, Yan Xu, Yo Tanaka, Kae Sato, Kazuma Mawatari, Tomohiro Konno, Kazuhiko Ishihara, and Takehiko Kitamori
    Biomicrofluidics, 4(3), 032208(2010).
  4. On-chip antibody immobilization for on-demand and rapid immunoassay on a microfluidic chip
    Toshinori Ohashi, Kazuma Mawatari, and Takehiko Kitamori
    Biomicrofluidics, 4(3), 032207(2010).
  5. The biological performance of cell-containing phospholipid polymer hydrogels in bulk and microscale form
    Yan Xu, Kihoon Jang, Tomohiro Konno, Kazuhiko Ishihara, Kazuma Mawatari, and Takehiko Kitamori
    Biomaterials, 31, 8839-8846(2010).
  6. Development of a micro droplet collider; the liquid-liquid system utilizing the spatial-temporal localized energy
    Katsuyoshi Takahashi, Kazuma Mawatari, Yasuhiko Sugii, Akihide Hibara, and Takehiko Kitamori
    Microfluidics and Nanofluidics, 9(45), 945-953 (2010).
  7. Two-Step Perpendicular Free-Solution Isoelectric Focusing in a Microchamber Array Chip
    Ryo Ishibashi, Takehiko Kitamori, and Kiyohito Shimura
    Lab on a Chip, 10, 2628-2631 (2010).
  8. Sensitive Determination of Concentration of Nonfluorescent Species in an Extended-nano Channel by Differential Interference Contrast Thermal Lens Microscope
    Hisashi Shimizu, Kazuma Mawatari, and Takehiko Kitamori
    Analytical Chemistry, 82(17), 7479-7484 (2010).
  9. A Microfluidic Hydrogel Capable of Cell Preservation Without Perfusion Culture Under Cell-based Assay Conditions
    Yan Xu, Kae Sato, Kazuma Mawatari, Tomohiro Konno, Kihoon Jang, Kazuhiko Ishihara, and Takehiko Kitamori
    Advanced Materials, 22, 3017-3021 (2010) (Highlighted on the front inside cover of the journal).
  10. An efficient surface modification using 2-methacryloyloxyethyl phosphorylcholine to control cell attachment via photochemical reaction in a microchannel
    Kihoon Jang, Kae Sato, Yo Tanaka, Yan Xu, Moritoshi Sato, Takahiro Nakajima, Kazuma Mawatari, Tomohiro Konno, Kazuhiko Ishihara, and Takehiko Kitamori
    Lab on a chip, 10, 1937-1945 (2010).
  11. Microbead-based rolling circle amplification in a microchip for sensitive DNA detection
    Kae Sato, Atsuki Tachihara, Bjorn Renberg, Kazuma Mawatari, Kiichi Sato, Yuki Tanaka, Jonas Jarvius, Mats Nilsson, and Takehiko Kitamori
    Lab on a Chip, 10, 1262-1266 (2010).
  12. Femto Liquid Chromatography with Attoliter Sample Separation in the Extended Nanospace Channel
    Masaru Kato, Masanori Inaba, Takehiko Tsukahara, Kazuma Mawatari, Akihide Hibara, and Takehiko Kitamori
    Analytycal Chemistry, 82(2), 543-547 (2010).
  13. Streaming potential/current measurement system for investigation of liquids confined in extended-nano space
    Kyojiro Morikawa, Kazuma Mawatari, Masaru Kato, Takehiko Tsukahara, and Takehiko Kitamori.
    Lab on a Chip, 10(7), 871-875 (2010).
  14. Micro OS-ELISA: Rapid noncompetitive detection of a small biomarker peptide by open-sandwich ELISA integrated into microfluidic device
    M.Ihara, A.Yoshikawa, Y.Wu, H.Takahashi, K.Sato, K.Mawatari, T.Kitamori, and H.Ueda
    Lab on a Chip, 10, 92-100 (2010).

2009

  1. Development of a Micro-Potentiometric Sensor for the Microchip Analysis of Alkali Ions
    Adelina SMIRNOVA, Kazuma MAWATARI, Hiroko TAKAHASHI, Yo TANAKA, Hiroaki NAKANISHI, and Takehiko KITAMORI.
    Analytical Sciences, 25(12), 1397-1402 (2009).
  2. Graft linker immobilization for spatial control of protein immobilization inside fused microchips
    K. Shirai, B. Renberg, K. Sato, K. Mawatari, T. Konno, K. Ishihara, and T. Kitamori.
    Electrophoresis, 30(24), 4251-4255 (2009).
  3. Development of Differential Interference Contrast Thermal Lens Microscope (DIC-TLM) for Sensitive Individual Nanoparticle Detection in Liquid
    Hisashi Shimizu, Kazuma Mawatari, and Takehiko Kitamori
    Analytical Chemistry, 81(23), 9802-9806 (2009).
  4. Electrochemical Studies on Liquid Properties in Extended Nanospaces Using Mercury Microelectrodes
    Takehiko Tsukahara, Takuya Kuwahata, Akihide Hibara, Haeng-Boo Kim, Kazuma Mawatari, and Takehiko Kitamori
    Electrophoresis, 30(18), 3212 – 3218 (2009).
  5. Assembly and simple demonstration of a micropump installing PDMS-based thin membranes as flexible micro check valves
    Yo Tanaka, Kae Sato, and Takehiko Kitamori
    Journal of Biomedical Nanotechnology, 5(5), 516-520 (2009).
  6. The Direct Synthesis of Hydrogen Peroxide (ca. 5wt%) from Hydrogen and Oxygen by Microreactor Technology
    Tomoya Inoue, Kenichiro Ohtaki,Yoshikuni Kikutani, Koichi Sato, Masateru Nishioka, Satoshi Hamakawa, Kazuma Mawatari, Fujio Mizukami, and Takehiko Kitamori
    Chemistry Letters, 38, 820-821 (2009).
  7. Serial DNA immobilization in micro- and extended nanospace channels
    Bjorn Renberg, Kae Sato, Kazuma Mawatari, Naokazu Idota, Takehiko Tsukahara, and Takehiko Kitamori
    Lab on a Chip, 9, 1517-1523 (2009).
  8. Hands on: thermal bonding of nano- and microfluidic chips
    Bjorn Renberg, Kae Sato, Takehiko Tsukahara, Kazuma Mawatari, and Takehiko Kitamori
    Microchim Acta, 166, 177-181 (2009).
  9. NMR Studies of Structure and Dynamics of Liquid Molecules Confined in Extended Nanospaces
    Takehiko Tsukahara, Wataru Mizutani, Kazuma Mawatari, and Takehiko Kitamori
    J. Phys. Chem. B, 113, 10808-10816 (2009).
  10. Lateral spatial resolution of thermal lens microscopy during continuous scanning for nonstaining biofilm imaging
    T. T. J. Rossteuscher, A. Hibara, K. Mawatari, and T. Kitamori
    Journal of Applied Physics, 105, 102030 (2009).
  11. A Micro-ELISA System for the Rapid and Sensitive Measurement of Total and Specific Immunoglobulin E and Clinical Application to Allergy Diagnosis
    Toshinori Ohashi, Kazuma Mawatari, Kae Sato, Manabu Tokeshi, Takehiko Kitamori
    Lab on a Chip, 9, 991-995 (2009).
  12. Integration of immunoassay into extended nanospace
    Ryu Kojima, Kazuma Mawatari, Bjorn Renberg, Takehiko Tsukahara and Takehiko Kitamori
    Microchimica Acta, 164, 307-310 (2009).
    (Published on the web: 28th June 2008)
  13. Circulation microchannel for liquid-liquid microextraction
    Yoshikuni Kikutani, Kazuma Mawatari, Akihide Hibara and Takehiko Kitamori
    Microchimica Acta, 164, 241-247 (2009).
    (Published on the web: 22nd May 2008)
  14. Phase separation of gas-liquid and liquid-liquid microflows in microchips
    Arata Aota, Kazuma Mawatari, Susumu Takahashi, Teruki Matsumoto, Kazuteru Kanda, Ryo Anraku, Akihide Hibara, Manabu Tokeshi and Takehiko Kitamori
    Microchimica Acta, 164, 249-255 (2009).
    (Published on the web: 11th November 2008)
  15. The use of electron beam lithographic graft-polymerization on thermoresponsive polymers for regulating the directionality of cell attachment and detachment
    Naokazu Idota, Takahiko Tsukahara, Kae Sato, Teruo Okano, Takehiko Kitamori
    Biomaterials, 30, 2095-2101 (2009).
  16. Individual Nanoparticle Detection in Liquids by Thermal Lens Microscopy and Improvement of Detection Efficiency Using a 1-µM Microfluidic Channel
    Nobuhiro SETA, Kazuma MAWATARI, and Takehiko KITAMORI
    Analytical Sciences, 25(2), 275-278 (2009).
  17. Rapid analysis of methamphetamine in hair by micropulverized extraction and microchip-based competitive ELISA
    Hajime Miyaguchi, Hiroko Takahashi, Toshinori Ohashi, Kazuma Mawatari, Yuko T. Iwata, Hiroyuki Inoue, Takehiko Kitamori
    Forensic Science International, 184, 1-5 (2009).
  18. Surface Modification by 2-Methacryloyloxyethyl Phosphorylcholine Coupled to a Photolabile linker for Cell Micropatterning
    Kihoon Jang, Kae Sato, Kazuma Mawatari, Tomohiro Konno, Kazuhiko Ishihara, and Takehiko Kitamori
    Biomaterials, 30, 1413-1420 (2009).

2008

  1. Numerical analysis of thermal lens effect for sensitive detection on microchip
    Ryo Anraku, Kazuma Mawatari, Manabu Tokeshi, Masatoshi Nara, Takahiro Asai, Akihiko Hattori, Takehiko Kitamori
    Electrophoresis, 29(9), 1895-1901 (2008).
    (Published on the web: 7th April 2008)
  2. Development of a pressure-driven nanofluidic control system and its application to an enzymatic reaction
    Takehiko Tsukahara, Kazuma Mawatari, Akihide Hibara, Takehiko Kitamori
    Analytical and Bioanalytical Chemistry, 391(8), 2745-2752 (2008).
    (Published on the web: 27th June 2008)
  3. Circular Dichroism Thermal Lens Microscope in UV Wavelength Region (UV-CD-TLM) for Chiral Analysis on Microchip
    Kazuma Mawatari, Shun Kubota, Takehiko Kitamori
    Analytical and Bioanalytical Chemistry, 391(7), 2521-2526 (2008).
    (Published on the web: 5th April 2008)
  4. Thermooptical detection in microships: From macro- to micro-scale with enhanced analytical parameters
    Adelina Smirnova, Mikhail A. Proskurnin, Svetlana N. Bendrysheva, Dmitry A. Nedosekin, Akihide Hibara and Takehiko Kitamori
    Electrophoresis, 29, 2741-2753 (2008).
    (Published on the web: 10th June 2008)
  5. Microfluidic Distillation Utilizing Micro-Nano Combined Structure
    Akihide Hibara, Kunihiko Toshin, Takehiko Tsukahara, Kazuma Mawatari and Takehiko Kitamori
    Chemistry Letters, 37(10), 1064-1065 (2008).
    (Published on the web: 13th September 2008)
  6. Flowing thermal lens micro-flow velocimeter
    Yoshikuni Kikutani, Kazuma Mawatari, Kenji Katayama, Manabu Tokeshi, Takashi Fukuzawa, Mitsuo Kitaoka and Takehiko Kitamori
    Sensors and Actuators B: Chemical, 133, 91-96 (2008).
    (Published on the web: 9th February 2008)
  7. Pesticide analysis by MEKC on a microchip with hydrodynamic injection from organic extract
    Adelina Smirnova, Kiyohito Shimura, Akihide Hibara, Mikhail A. Proskurnin, Takehiko Kitamori
    Journal of Separation Science, 31, 904-908 (2008).
    (Published on the web: 25th February 2008)
  8. Isoelectric focusing in a microfluidically defined electrophoresis channel
    Kiyohito Shimura, Katsuyoshi Takahashi, Yutaka Koyama, Kae Sato, Takehiko Kitamori
    Analytical Chemistry, 80(10), 3818-3823 (2008).
    (Published on the web: 12th April 2008)
  9. Development of an osteoblast-based 3D continuous-perfusion microfluidic system for drug screening
    Kihoon Jang, Kae Sato, Kazuyo Igawa, Ung-il Chung, Takehiko Kitamori
    Analytical and Bioanalytical Chemistry, 390(3), 825-832 (2008).
    (Published on the web: 15th December 2007)
  10. Micro- and nanometer-scale patterned surface in a microchannel for cell culture in microfluidic devices
    Makiko Goto, Takehiko Tsukahara, Kiichi Sato, Takehiko Kitamori
    Analytical and Bioanalytical Chemistry, 390(3), 817-823 (2008).
    (Published on the web: 26th July 2007)
  11. Demonstration of a bio-microactuator powered by vascular smooth muscle cells coupled to polymer micropillars
    Yo Tanaka, Kae Sato, Tatsuya Shimizu, Masayuki Yamato, Teruo Okano, Ichiro Manabe, Ryozo Nagai, and Takehiko Kitamori
    Lab on a Chip, 8(1), 58-61 (2008).
    (Published on the web: 22nd November 2007)

2007

  1. In situ microfluidic flow rate measurement based on near-field heterodyne grating method
    Kenji Katayama, Uchimura Hisato, Hitomi Sakakibara, Yoshikuni Kikutani, Takehiko Kitamori
    Review of Scientific Instruments, 78(8), 083101 (2007).
    (Published on the web: 13th August 2008)
  2. Simulation Examination for Multilayer Flow System
    Ryo Anraku, Takahiro Asai, Kenji Uchiyama, Akihiko Hattori, Manabu Tokeshi, Takehiko Kitamori
    IFMBE Proceedings, 14(5), 318-320 (2007).
  3. Flow Velocity Detector in a Microchip Based on Photothermally Induced Grating
    Kenji KATAYAMA, Yoshikuni KIKUTANI, and Takehiko KITAMORI
    Analytical Sciences, 23(6), 639-643 (2007).
  4. On-Chip Connector Valve for Immunoaffinity Chromatography in a Microfluidic Chip
    K. Shimura, Y. Koyama, K. Sato, and T. Kitamori
    J. Separation Science, 30(10), 1477-1481 (2007).
  5. Pressure Balance at the Liquid-Liquid Interface in Micro Counter-Current Flows in Microchips
    Arata Aota, Akihide Hibara, Takehiko Kitamori
    Analytical Chemistry, 79(10), 3919-3924 (2007)
    (Published on the web: 18th April, 2007)
  6. Tuning microchannel wettability and fabrication of multiple-step Laplace valves
    Go Takei, Mari Nonogi, Akihide Hibara, Takehiko Kitamori and Haeng-Boo Kim
    Lab on a Chip, 7(5), 596-602 (2007).
    (Published on the web: 13th April, 2007)
  7. Development of an NMR Interface Microchip “MICCS”・for Direct Detection of Reaction Products and Intermediates of Micro-syntheses Using a “MICCS-NMR”
    Y. Takahashi, M. Nakakoshi, S. Sakurai, Y. Akiyama, H. Suematsu, H. UtsumiI, and T. Kitamori
    Analytical Sciences, 23(4), 395-400 (2007).
    (Published on the web: 10th April, 2007)
  8. Rapid bonding of Pyrex glass microchips
    Yoshitaka Akiyama, Keisuke Morishima, Atsuna Kogi, Yoshikuni Kikutani, Manabu Tokeshi, Takehiko Kitamori
    Electrophoresis, 28(6), 994-1001 (2007).
  9. Highly Sensitive Detection of Non-Labeled Peptides Using UV Excitation Thermal Lens Microscope/Liquid Chromatography
    Shinichiro Hiki, Manabu Tokeshi, Masaya Kakuta, Kazuma Mawatari, Yoshikuni Kikutani, Kiichi Sato, Akihide Hibara, Kiyohito Shimura, Naoyuki Uchida and Takehiko Kitamori
    Bunseki Kagaku, 56(1), 1-8 (2007).
    (Published on the web: 10th January, 2007)
  10. Nanometer-scale Patterned Surfaces for Control of Cell Adhesion
    Makiko Goto, Takehiko Tsukahara, Kae Sato, Tomohiro Konno, Kazuhiko Ishihara, Kiichi Sato, Takehiko Kitamori
    Analytical Sciences, 23(3), 245-247.
    (Published on the web: 10th March, 2007)
  11. Culture and leukocyte adhesion assay of human arterial endothelial cells in a glass microchip
    Yo Tanaka, Yuji Kikukawa, Kae Sato, Yasuhiko Sugii, Takehiko Kitamori
    Analytical Sciences, 23(3), 261-266 (2007).
    (Published on the web: 10th March, 2007)
  12. Flow Velocity Profile of Micro Counter-Current Flows
    Arata Aota, Akihide Hibara, Kyosuke Shinohara, Yasuhiko Sugii, Koji Okamoto, Takehiko Kitamori
    Analytical Sciences, 23(2), 131-133 (2007).
    (Published on the web: 10th February, 2007)
  13. NMR Study of Water Molecules Confined in Extended-Nano Spaces
    Takehiko Tsukahara, Akihide Hibara, Yasuhisa Ikeda, Takehiko Kitamori
    Angewandte Chemie International Edition, 46(7) 1180-1183 (2007) (Highlighted in the inside cover).
    (Published on the web: 29th January, 2007)
  14. Application of a micro multiphase laminar flow on a microchip for extraction and determination of derivatized carbamate pesticides
    Adelina Smirnova, Kiyohito Shimura, Akihide Hibara, Mikhail A. Proskurnin, Takehiko Kitamori
    Analytical Sciences, 23(1), 103-107 (2007).
    (Published on the web: 10th January, 2007)
  15. A micro-spherical heart pump powered by cultured cardiomyocytes
    Yo Tanaka, Kae Sato, Tatsuya Shimizu, Masayuki Yamato, Teruo Okano, Takehiko Kitamori
    Lab on a Chip, 7(2), 207-212 (2007).
    (Published on the web: 13th November, 2006)
  16. Countercurrent Laminar Microflow for Highly Efficient Solvent Extraction
    Arata Aota, Masaki Nonaka, Akihide Hibara, Takehiko Kitamori
    Angewandte Chemie International Edition, 46(6), 878-880 (2007).
    (Published on the web: 20th December, 2006)
  17. Simulation of photoacoustic imaging of microcracks in silicon wafers using a structure-changeable multilayered thermal diffusion model
    Nakata T, Kitamori T, Sawada
    Applied Optics, 46(7), 1019-1025 (2007).
    (Published on the web: 12th February, 2007)

2006

  1. Instantaneous carbon-carbon bond formation using a microchannel reactor with a catalytic membrane
    Yasuhiro Uozumi, Yoichi M. A. Yamada, Tomohiko Beppu, Naoshi Fukuyama, Masaharu Ueno, and Takehiko Kitamori
    J. Am. Chem. Soc., 128(50) 15994-15995 (2006).
    (Published on the web: 1st December, 2006)
  2. Evaluation of effects of shear stress on hepatocytes by a microchip-baesd system
    Yuki Tanaka, Masayuki Yamato, Teruo Okano, Takehiko Kitamori, Kiichi Sato
    Meas. Sci. Technol. 17, 3167-3170 (2006).
    (Published on the web: 26th October, 2006)
  3. Pressure-driven flow control system for nanofluidic chemical process
    Eiichiro Tamaki, Akihide Hibara, Haeng-Boo Kim, Manabu Tokeshi, Takehiko Kitamori
    J. Chromatography A. 1137(2), 256-262, (2006).
  4. Radiation Degradation of Microchemical Chips and Capillary Tubes by Gamma-Ray Irradiation
    H.Ikeda, M.Tokeshi, H.Hotokezaka, Y.Ikeda, and T. Kitamori
    Trans. At. Energy Soc. Japan, 5(3), 209-220 (2006)
  5. Total reflection X-ray fluorescence analysis with chemical microchip
    K. Tsuji, Y. Hanaoka, A. Hibara, M. Tokeshi, and T. Kitamori
    Spectrochimica Acta Part B-Atomic Spectroscopy, 61(4), 389-392 (2006)
  6. Microchip-based liquid-liquid extraction for gas-chromatography analysis of amphetamine-type stimulants in urine
    Hajime Miyaguchi, Manabu Tokeshi, Yoshikuni Kikutani,Akihide Hibara, Hiroyuki Inoue, and Takehiko Kitamori
    J. Chromatogr. A, 1129, 105-110 (2006)
  7. Supercooled micro flows and application for asymmetric synthesis
    S. Matsuoka, A. Hibara, M. Ueno, T. Kitamori
    Lab on a Chip, 6(9), 1236-1238 (2006)
    (Published on the web: 13th July, 2006)
  8. Miniaturized thermal lens and fluorescence detection system for microchemical chips
    M. Yamauchi, M. Tokeshi, J. Yamaguchi, T. Fukuzawa, A. Hattori, A. Hibara, T. Kitamori
    J. Chromatogr. A, 1106(1-2), 89-93 (2006).
  9. Micro-multiphase laminar flows for the extraction and detection of carbaryl derivative
    A. Smirnova, K. Mawatari, A. Hibara, M. A. Proskurnin and T. Kitamori
    Analytica Chimica Acta, 558(1-2), 69-74 (2006).
  10. Demonstration of a PDMS-based bio-microactuator using cultured cardiomyocytes to drive polymer micropillars
    Y. Tanaka, K. Morishima, T. Shimizu, A. Kikuchi, M. Yamato, T. Okano, and T. Kitamori
    Lab on a Chip, 6(2), 230-235 (2006).
  11. On-Line High-throughput ESIMS detection of a Reaction Product Using Synthesis and Extraction Microchips
    Y. Takahashi, R. Sakai, K. Sakamoto, Y. Yoshida, M. Kitaoka and T. Kitamori
    J. Mass Spectrom. Soc. Jpn., 54(1), 19-24 (2006).
  12. An actuated pump on-chip powered by cultured cardiomyocytes
    Y. Tanaka, K. Morishima, T. Shimizu, A. Kikuchi, M. Yamato, T. Okano, and T. Kitamori
    Lab on a Chip, 6(3), 362-368 (2006)
    (Published on the web: 25th January 2006)
  13. AC electroosmotic micromixer for chemical processing in a microchannel
    N. Sasaki, T. Kitamori, and H.-B. Kim
    Lab on a Chip, 6(4), 550-554 (2006).
    (Published on the web: 14th February 2006)
  14. Cell Culture and Life Support System for MicrobioReactor and Bioassay
    Y. Tanaka, K. Sato, M. Yamato, T. Okano, and T. Kitamori
    Journal of Chromatography A, 1111(2), 233-237 (2006).
    (Published on the web: 11th July 2005)
  15. Monitoring of intercellular messengers released from neuron networks cultured in a microchip
    Kiichi Sato, Akiko Egami, Tamao Odake, Manabu Tokeshi, Makoto Aihara and Takehiko Kitamori
    Journal of Chromatography A, 1111(2), 228-232 (2006).
    (Published on the web: 26th July 2005)
  16. Demonstration of a bio-microactuator powered by cultured cardiomyocytes coupled to hydrogel micropillars
    K. Morishima, Y. Tanaka, M. Ebara, T. Shimizu, A. Kikuchi, M. Yamato, T. Okano, and T. Kitamori
    Sensors and Actuators B: Chemical, 119(1), 345-350 (2006).
    (Published on the web: 20th January 2006)
  17. UV-excitation thermal lens microscope for non-labeled and ultrasensitive detection of non-fluorescent molecules
    S. Hiki, K. Mawatari, A. Hibara, M. Tokeshi, and T. Kitamori
    Analytical Chemistry, 78(8), 2859-2863 (2006).
    (Published on the web: 10th March 2006)
  18. Circular Dichroism Thermal Lens Microscope for Sensitive Chiral Analysis on Microchip
    M.Yamauchi, K.Mawatari, A.Hibara, M.Tokeshi, and T.Kitamori
    Analytical Chemistry, 78(8), 2646-2650 (2006).
    (Published on the web: 10th March 2006)
  19. Quantitative Detection and Fixation of Single and Multiple Gold Nanoparticles on a Microfluidic Chip by Thermal Lens Microscope
    K.Mawatari, M.Tokeshi, and T.Kitamori
    Analytical Sciences, 22(4), 781-784 (2006).
  20. Liquid Filling Method for Nanofluidic Channels Utilizing High Solubility of CO2
    E. Tamaki, A. Hibara, H. B. Kim, M. Tokeshi, T. Ooi, M. Nakao, and T Kitamori
    Analytical Sciences, 22(4), 529-532 (2006).
  21. On-chip integration of affinity chromatography and isoelectric focusing for the analysis of post-translational modification
    Shimura K, Koyama Y, Kitamori T
    Molecular & Cellular Proteomics, 5(10), S311-S311 1128 Suppl. (2006).

2005

  1. Micro thermal lens optical systems
    M. Tokeshi, J. Yamaguchi, A. Hattori, T. Kitamori
    Anal. Chem., 77 (2), 626-630 (2005).
    (Published on the web: 8th December 2004)
  2. Tunable thermal lens spectrometry utilizing microchannel-assisted thermal lens spectrometry
    E. Tamaki, A. Hibara, M. Tokeshi, T. Kitamori
    Lab on a Chip, 5(2), 129-131 (2005).
    (Published on the web: 6th January 2005)
  3. Optimization of An Interface Chip for Coupling Capillary Electrophoresis with Thermal Lens Microscopic Detection
    K. Uchiyama, M. Tokeshi, Y. Kikutani, A. Hattori, T. Kitamori
    Anal. Sci., 21, 49-52 (2005).
  4. Surface Modification Method of Microchannels for Gas-Liquid Two Phase Flow in Microchips
    A. Hibara, S. Iwayama, S. Matsuoka, M. Ueno, Y. Kikutani, M. Tokeshi, T. Kitamori
    Anal. Chem., 77(3), 943-947 (2005).
    (Published on the web: 31st December 2004)
  5. Photocatalytic Redox-Combined Synthesis of L-Pipecolinic Acid with a Titania-modified Microchannel Chip
    G. Takei, T. Kitamori, H.-B. Kim
    Catal. Commun., 6, 357-360 (2005)
    (Published on the web: 21st March 2005)
  6. Spectroelectrochemical detection using thermal lens microscopy with a glass-substrate microelectrode-microchannel chip
    H.-B. Kim, T. Hagino, N. Sasaki, N. Watanabe, and T. Kitamori
    J. Electroanal. Chem., 577(1), 47-53 (2005)
    (Published on the web: 25th December 2004)
  7. Development of a Microchip-based Bioassay System Using Cultured Cells
    M. Goto, K, Sato, A. Murakami, M. Tokeshi, T. Kitamori
    Anal. Chem., 77(7), 2125-2131 (2005)
    (Published on the web: 24th February 2005)
  8. Uraniumu (UO22+) Retention Property of Degraded n-dodecane by Acidic Radiolysis in the Prex Process
    H. Ikeda, M. Tokeshi, T. Kitamori
    Radioisotopes., 54(2), (2005)
  9. Rapid proton diffusion in microfluidic devices by means of micro -LIF technique
    K. Shinohara, Y. Sugii, A. Hibara, M. Tokeshi, T. Kitamori, K. Okamoto
    Experiments in Fluids, 38(1), 117-122 (2005).
    (Published on the web: 30th November 2004)
  10. Effect of Korteweg stress in miscible liquid two-layer flow in a microfluidic device
    Y. Sugii, K. Okamoto, A. Hibara, M. Tokeshi, T. Kitamori
    J. Visualization, 8(2), 117-124 (2005).
  11. Grazing-Exit and Micro X-ray Fluorescence Analyses for Chemical Microchips
    K. Tsuji, T. Emoto, Y. Nishida, E. Tamaki, Y. Kikutani, A. Hibara and T. Kitamori
    Analytical Sciences, 21(7), 799-803 (2005).
  12. UV and circular dichroism thermal lens microscope for integrated chemical systems and HPLC on microchip
    K. Mawatari and T. Kitamori
    Proc. SPIE, 5953, 595303.
  13. Application of a gas-pressurized micro fluidic pump to mu TAS technology
    Y. Tomotsune, T. Kawakami, S. Tomatsuri, T. Noguchi, T. Ito, K. Tatenuma, M. Kitaoka, T. Kitamori
    BUNSEKI KAGAKU, 54(12), 1169-1174 (2005) in Japanese.
  14. Development of the innovative nuclide separation system for high-level radioactive waste using microchannel chip-extraction behavior of metal ions from aqueous phase to organic phase in microchannel
    H. Hotokezaka, M. Tokeshi, M. Harada, T. Kitamori, Y. Ikeda
    Progress in Nuclear Energy, 47, 439-447 (2005).
  15. Continuous flow chemical processing on a microchip using microunit operations and a multiphase flow network
    Tokeshi M, Kitamori T
    Progress in Nuclear Energy, 47, 434-437 (2005).

2004

  1. Drug Response Assay System in a Microchip Using Human Hepatoma Cells
    Yuki Tanaka, Kiichi Sato, Masayuki Yamato, Teruo Okano, Takehiko Kitamori
    Anal. Sci., 20, 411-423 (2004).
    (No. 3, March, 2004)
  2. Micro Wet Analysis System Using Multi-Phase Laminar Flows in Three-Dimensional Microchannel Network
    Yoshikuni Kikutani, Hideaki Hisamoto, Manabu Tokeshi and Takehiko Kitamori
    Lab on a Chip, 4(4), 328-332 (2004).
    (Published on Web April 6 2004)
  3. Measurement of pH field of chemically reacting flow in microfluidic devices by laser-induced fluorecence
    Kyosuke Shinohara, Yasuhiko Sugii, Koji Okamoto, Haruki Madarame, Akihide Hibara, Manabu Tokeshi, Takehiko Kitamori
    Mesurement Science and Technology, 15, 955-960 (2004).
    (Published 20 April 2004)
  4. A microfluidic device for conducting gas-liquid-solid hydrogenation reactions
    J. Kobayashi, Y. Mori, K. Okamoto, R. Akiyama, M. Ueno, T. Kitamori, S. Kobayashi
    Science, 304(5675), 1305-1308 (2004).
    (Published 28 May 2004)
  5. Capillary-assembled microchip for universal integration of various chemical functions onto a single microfluidic device
    H. Hisamoto, Y. Nakashima, C. Kitamura, S. Funano, M. Yasuoka, K. Morishima, Y. Kikutani, T. Kitamori, S. Terabe
    Anal. Chem., 76(11): 3222-3228 (2004).
    (Published 1 June 2004)
  6. High-speed micro-PIV measurements of transient flow in microfluidic devices
    K. Shinohara, Y. Sugii, A. Aota, A. Hibara, M. Tokeshi, T. Kitamori, K. Okamoto
    Mesurement Science and Technology, 15, 1965-1970 ・・004).
    (Published 20 August 2004)
  7. Microchip-based enzyme-linked immunosorbent assay (microELISA) system with thermal lens detection
    K. Sato, M. Yamanaka, T. Hagino, M. Tokeshi, H. Kimura, T. Kitamori
    Lab on a Chip, 4(6), 570-575 (2004).
  8. Integration of an immunoassay system into a microchip for high-throughput assay
    Sato K, Kitamori T
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 4(6), 575-579 (2004).

2003

  1. Chemico-Functional Membrane for Integrated Chemical Processes on a Microchip
    Hideaki Hisamoto, Yuki Shimizu, Kenji Uchiyama, Manabu Tokeshi, Yoshikuni Kikutani, Akihide Hibara, and Takehiko Kitamori
    Anal. Chem., 75, 350-354 (2003).
    (No. 2, January 15, 2003, Published on Web 12/13/2002)
  2. An Interface Chip Connection between Capillary Electrophoresis and Thermal Lens Microscope
    Kenji Uchiyama, Akihide Hibara, Kiichi Sato, Hideaki Hisamoto, Manabu Tokeshi, Takehiko Kitamori
    Electrophoresis, 24, 179-184 (2003).
    (No. 1-2, January 2003, Published on Web ?)
  3. Microchannel-Assisted Thermal-Lens Spectrometry for Microchip Analysis
    Eiichiro Tamaki, Akihide Hibara, Manabu Tokeshi, and Takehiko Kitamori
    J. Chromatogr. A, 987, 197-204 (2003).
    (No. 1-2, February 14, Published on Web 11/20/2002)
  4. Optimisation of Thermal Lens Microscopic Measurements in a Microchip
    Mikhail A. Proskurnin, Maksim N. Slyadnev, Manabu Tokeshi and Takehiko Kitamori
    Anal. Chim. Acta, 480, 79-95 (2003).
    (Issue 1, March 17, 2003, Published on Web ?)
  5. Phase-transfer Alkylation Reactions Using Microreactors
    Masaharu Ueno, Hideaki Hisamoto, Takehiko Kitamori and Shu Kobayashi
    Chem. Comm., 936-937 (2003).
    (No. 8, April 3, Published on Web 03/27/2003)
  6. Development of a Desktop-sized Themal Lens Microscope
    Shinichiro Hiki, Manabu Tokeshi, Akihide Hibara and Takehiko Kitamori
    Bunseki Kagaku (in Japanese), 52, 569-574 (2003).
    (No. 8, August, 2003)
  7. Spectroscopic Analysis of Liquid / Liquid Interfaces in Multiphase Microflows
    Akihide Hibara, Masaki Nonaka, Manabu Tokeshi, Takehiko Kitamori
    J. Am. Chem. Soc., 125, 14954-14955 (2003).
    (No. 49, December 10, Published on Web 11/15/2003)

2002

  1. Microchip-Based Immunoassay System with Branching Multichannels for Simultaneous Determination of Interferon Gamma
    Kiichi Sato, Maho Yamanaka, Hiroko Takahashi, Manabu Tokeshi, Hiroko Kimura, and Takehiko Kitamori
    Electrophoresis, 23, 734-739 (2002).
    (No. 5 March 2002, Published on Web 03/07/2002)
  2. Single Cell Analysis by a Scanning Thermal Lens Microscope with a Microchip: Direct Monitoring of Cytochrome-c Distribution During Apoptosis Process
    Eiichiro Tamaki, Kiichi Sato, Manabu Tokeshi, Kae Sato, Makoto Aihara, and Takehiko Kitamori
    Anal. Chem. 74, 1560-1564 (2002).
    (No. 7, April 1, 2002, Published on Web 02/21/2002)
  3. Continuous Flow Chemical Processing on a Microchip by Combining Micro Unit Operations and a Multiphase Flow Network
    Manabu Tokeshi, Tomoko Minagawa, Kenji Uchiyama, Akihide Hibara, Kiichi Sato, Hideaki Hisamoto, and T. Kitamori
    Anal. Chem., 74, 1565-1571 (2002).
    (No. 7, April 1, 2002, Published on Web 02/21/2002)
  4. Stabilization of Liquid Interface and Control of Two-Phase Confluence and Separation in Glass Microchips by Utilizing Octadecylsilane Modification of Microchannels
    Akihide Hibara, Masaki Nonaka, Hideaki Hisamoto, Kenji Uchiyama, Yoshikuni Kikutani, Manabu Tokeshi, and Takehiko Kitamori
    Anal. Chem., 74, 1724-1728 (2002).
    (No. 7, April 1, 2002, Published on Web 02/16/2002)
  5. Three-Layer Flow Membrane System on a Microchip for Investigation of Molecular Transport
    Mariana Surmeian, Maxim N. Sladnev, Hideaki Hisamoto, Akihide Hibara, Kenji Uchiyama, and Takehiko Kitamori
    Anal. Chem., 74, 2014-2020 (2002).
    (No. 9, May 1, 2002,Published on Web 03/22/2002)
  6. Nanochannels on a Fused-Silica Microchip and Liquid Properties Investigation by Time-Resolved Fluorescence Measurements
    Akihide Hibara, Takumi Saito, Haeng-Boo Kim, Manabu Tokeshi, Takeshi Ooi, Masayuki Nakao, and Takehiko Kitamori
    Anal. Chem., 74, 6170-6176 (2002).
    (No. 24, December 15, 2002, Published on Web 11/08/2002)
  7. Pile-Up Glass Microreactor
    Yoshikuni Kikutani, Akihide Hibara, Kenji Uchiyama, Hideaki Hisamoto, Manabu Tokeshi, Takehiko Kitamori
    Lab on a Chip, 2, 193-196 (2002).
    (No. 4, December, 2002, Published on Web 11/04/2002)
  8. Glass Microchip with Three-Dimensional Microchannel Network for 2テ・ Parallel Synthesis
    Yoshikuni Kikutani, Takayuki Horiuchi, Kenji Uchiyama, Hideaki Hisamoto, Manabu Tokeshi, Takehiko Kitamori
    Lab on a Chip, 2, 188-192 (2002).
    (No. 4, December, 2002, Published on Web 11/08/2002)

2001

  1. Integrated Multilayer Flow System on a Microchip
    Akihide Hibara, Manabu Tokeshi, Kenji Uchiyama, Hideaki Hisamoto, Takehiko Kitamori
    Anal. Sci., 17, 89-93 (2001).
  2. Determination of Carcinoembryonic Antigen in Human Sera by Integrated Bead-Bed Immunoassay in a Microchip for Cancer Diagnosis
    Kiichi Sato, Manabu Tokeshi, Hiroko Kimura, and Takehiko Kitamori
    Anal. Chem., 73, 1213-1218 (2001).
  3. On-Chip Integration of Neutral Ionophore-Based Ion Pair Extraction Reaction
    Hideaki Hisamoto, Takayuki Horiuchi, Manabu Tokeshi, Akihide Hibara, and Takehiko Kitamori
    Anal. Chem., 73, 1382-1386 (2001).
  4. Determination of Sub-Yoctomole Amounts of Non-Fluorescent Molecules Using a Thermal Lens Microscope: Sub-Single Molecule Determination
    Manabu Tokeshi, Marika Uchida, Akihide Hibara, Tsuguo Sawada, Takehiko Kitamori
    Anal. Chem., 73, 2112-2116 (2001).
  5. Morphological Dependence of Radiative and Non-Radiative Relaxation Energy Balance in Photoexcited Arylether Dendrimers as Observed by Fluorescent and Thermal Lens Spectroscopies
    Yuki Wakabayashi, Manabu Tokeshi, Akihide Hibara, Dong-Lin Jiang, Takuzo Aida, Takehiko Kitamori
    J. Phys. Chem. B, 105, 4441-4445 (2001).
  6. Optimization of the Optical-Scheme Design for Photothermal-Lens Microscopy in Microchips
    Mikhail A. Proskurnin, Manabu Tokeshi, Maxim N. Slyadnev, Takehiko Kitamori
    Anal. Sci., 17, s454-s457 (2001).
  7. Distribution of Methyl Red on Water-Organic Liquid Interface in Microchannel
    Mariana Surmeian, A. Hibara, M. Slyadnev, K. Uchiyama, H. Hisamoto, T. Kitamori
    Anal. Lett., 34, 1421-1429 (2001).
  8. Photothermal Temperature Control of a Chemical Reaction on a Microchip Using an Infrared Diode Laser
    Maxim N. Slyadnev, Yuki Tanaka, Manabu Tokeshi, T. Kitamori
    Anal. Chem., 73, 4037-4044 (2001).
  9. Acceleration of Enzymatic Reaction in a Microchip
    Yuki Tanaka, Maxim N. Slyadnev, Kiichi Sato, Manabu Tokeshi, Haeng-Boo Kim, Takehiko Kitamori
    Anal. Sci., 17, 809-810 (2001).
  10. Integration of a Wet Analysis System on a Glass Chip: Determination of Co(II) as 2-Nitroso-1-Naphtol Chelates by Solvent extraction and Themal Lens Microscope
    Tomoko Minagawa, Manabu Tokeshi, Takehiko Kitamori
    Lab on a Chip, 1, 72-75 (2001).
  11. Use of a thermal lens microscope in integrated catecholamine determination on a microchip
    Hussein M. Sorouraddin, Akihide Hibara, Takehiko Kitamori
    Fresenius’ Journal of Analytical Chemistry, 371, 91-96 (2001).
  12. Assay of Spherical Cell Surface Molecules by Thermal Lens Microscopy and Its Application to Blood Cell Substances
    Hiroko Kimura, Kazuya Sekiguchi, Takehiko Kitamori, Tsuguo Sawada, Masahiro Mukaida
    Anal. Chem., 73, 4333-4337 (2001).
  13. On-Chip Integration of Sequential Ion Sensing System Based on Intermittent Reagent Pumping and Formation of Two-Layer Flow
    Hideaki Hisamoto, Takayuki Horiuchi, Kenji Uchiyama, Manabu Tokeshi, Akihide Hibara, and Takehiko Kitamori
    Anal. Chem., 73, 5551-5556 (2001).
  14. Application of Microchip Fabricated of Photosensitive Glass for Thermal Lens Microscopy
    Takeshi Ito, Kenji Uchiyama, Seishiro Ohya and Takehiko Kitamori
    Jpn. J. Appl. Phys., 40, 5469-5473 (2001).
  15. Fast and High Conversion Phase-Transfer Synthesis Exploiting Liquid/Liquid Interface Formed in Microchannel Chip
    Hideaki Hisamoto, Takumi Saito, Manabu Tokeshi, Akihide Hibara, and Takehiko Kitamori
    Chem. Comm., 2001(24), 2662-2663 (2001).
  16. Highly sensitive and direct detection DNA fragments using a laser-induced capillary vibration effect
    T. Odake, K. Tsunoda, T. Kitamori, T. Sawada
    Anal. Sci., 17, 95-98 (2001).

2000

  1. Integration of an Immunosorbent Assay System: Analysis of Secretory Human Immunoglobulin A on Polystyrene Beads in a Microchip
    Kiichi Sato, Manabu Tokeshi, Tamao Odake, Hiroko Kimura, Takeshi Ooi, Masayuki Nakao, Takehiko Kitamori
    Anal. Chem., 72, 1144-1147 (2000).
  2. Integration of a Microextraction System on a Glass Chip: Ion-Pair Solvent Extraction on Fe(II) with 4,7-Diphenyl-1,10-phenanthrolinedisulfonic Acid and Tri-n-octylmethylammonium Chloride
    Manabu Tokeshi, Tomoko Minagawa, Takehiko Kitamori
    Anal. Chem, 72, 1711-1714 (2000).
  3. Sub-Single Molecule Determination of Non-Fluorescent Species by Scanning Thermal Lens Microscope and Its Application to Single Cell
    Takehiko Kitamori, Marika Uchida, Akiko Egami, Kazuya Sekiguchi, Jinjian Zheng, Tsuguo Sawada, Manabu Tokeshi, Kiichi Sato, Hiroko Kimura
    SPIE,, 3922, 67-72 (2000).
  4. Imaging of Blood Antigen Distribution on Blood Cells by Thermal Lens Microscopy
    Hiroko Kimura, Kazuya Sekiguchi, Fumiko Nagao, Masahiro Mukaida, Takehiko Kitamori, Tsuguo Sawada
    SPIE,, 278-284 (2000).
  5. Chemiluminescence on a Microchip
    Xing-Zheng Wu, Mari Suzuki, Tsuguo Sawada, Takehiko Kitamori
    Anal. Sci., 16, 321-323 (2000).
  6. Molecular Transport between Two Phases in a Microchannel
    Kiyoshi Sato, Manabu Tokeshi, Tsuguo Sawada, Takehiko Kitamori
    Anal. Sci., 16, 455-456 (2000).
  7. Integration of a Microextraction System: Solvent Extraction of Co-2-Nitroso-5-dimethylaminophenol Complex on a Microchip
    Manabu Tokeshi, Tomoko Minagawa, Takehiko Kitamori
    J. Chromatogr. A,, 894, 19-23 (2000).
  8. Non-Contact Photothermal Control of Enzyme Reaction on a Microchip by Using a Compact Diode Laser
    Yuki Tanaka, Maxim N. Slyadnev, Akihide Hibara, Manabu Tokeshi, Takehiko Kitamori
    J. Chromatogr. A, 894, 45-51 (2000).
  9. Thermal Lens Microscope
    Kenji Uchiyama, Akihide Hibara, Hiroko Kimura, Tsuguo Sawada, Takehiko Kitamori
    Jpn. J. Appl. Phys., 39, 5316-5322 (2000).
  10. Integrated FIA for the Determination of Ascorbic Acid and Dehydroascorbic Acid in a Microfabricated Glass-Channel by Thermal-Lens Microscopy
    Hussein M. Sorouraddin, Akihide Hibara, Mikhail A. Proskrunin, Takehiko Kitamori
    Anal. Sci., 16, 1033-1037 (2000).
  11. Detection and measurement of a single blood cell surface antigen by thermal lens microscopy
    Kimura H, Nagao F, Kitamura A, Sekiguchi K, Kitamori T, Sawada T
    Anal. Biochem., 283, 27-32 (2000).
  12. Infrared Absorption Characteristics of Large-Sized Spherical Aryl-Ether Dendrimers
    Yuki Wakabayashi, Manabu Tokeshi, Akihide Hibara, Dong-Lin Jiang, Takuzo Aida, Takehiko Kitamori
    Anal. Sci. 16, 1323-1326 (2000).
  13. Effect of organic phase on dynamic and collective behavior of surfactants at liquid/liquid interfaces by a time-resolved quasi-elastic laser-scattering method
    ZH. Hang, T. Kitamori, T. Sawada, I Tsuyumoto
    Anal. Sci., 16, 1199-1202 (2000).

1999

  1. Ultrafast electron transport phenomena in highly excited gold films
    A. Hibara, T. Morishita, I. Tsuyumoto, T. Kitamori, T. Sawada
    J. Luminescence, 834, 33-36 (1999).
  2. Single- and countable-molecule detection of non-fluorescent molecules in liquid phase
    M. Tokeshi, M. Uchida, K. Uchiyama, T. Sawada, T. Kitamori
    J. Luminescence, 834, 261-264 (1999).
  3. Long-term energy storage of dendrimers
    Y. Wakabayashi, M. Tokeshi, DL. Jiang, T. Aida, T. Kitamori
    J. Luminescence, 834, 313-315 (1999).
  4. Analysis of serum proteins adsorbed to a hemodialysis membrane of hollowfiber type by thermal lens microscopy
    H. Kimura, H. Kojima, M. Mukaida, T. Kitamori, T. Sawada
    Anal. Sci., 15, 1101-1107 (1999).
  5. Miniaturized ultrathin slab gel electrophoresis with thermal lens microscope detection and its application to fast genetic diagnosis
    JJ. Zheng, T. Odake, T. Kitamori, T. Sawada
    Anal. Chem., 71, 5003-5008 (1999).
  6. Critical increment of Lewis blood group antigen in serum by cancer found by photothermal immunoassay
    H. Kimura, T. Kitamori, T. Sawada
    Anal. Biochem., 274, 98-103 (1999).
  7. Structural change of heavy water by laser-induced plasma generation
    H. Yui, M. Fujinami, T. Kitamori, T. Sawada
    Chem. Phys. Lett., 308, 437-440 (1999).
  8. Direct measurements of femtosecond energy dissipation processes of hot electrons in a gold film
    A. Hibara, T. Morishita, I. Tsuyumoto, A. Harata, T. Kitamori, T. Sawada
    Jpn. J. Appl. Phys., 38 (1999) 2983-2987.
  9. Integration of flow injection analysis and zeptomole-level detection of the Fe(II)-o-phenanthroline complex
    K. Sato, M. Tokeshi, T. Kitamori, T. Sawada
    Anal. Sci., 15, 641-645 (1999).
  10. Sub-attomole molecule detection in a single biological cell in-vitro by thermal lens microscopy
    M. Harada, M. Shibata, T. Kitamori, T. Sawada
    Anal. Sci., 15, 647-650 (1999).
  11. Enhancement of stimulated Raman scattering in laser-induced plasma formation in solvent mixture
    H. Yui, T. Kitamori, T. Sawada
    Chem. Phys. Lett., 306, 325-329 (1999).
  12. Sub-zeptomole detection in a microfabricated glass channel by thermal-lens microscopy
    K. Sato, H. Kawanishi, M. Tokeshi, T. Kitamori, T. Sawada
    Anal. Sci., 15, 525-529 (1999).
  13. Observation of one process in a phase transfer catalytic reaction at a liquid liquid interface by using the quasi-elastic laser scattering method
    Y. Uchiyama, I. Tsuyumoto, T. Kitamori, T. Sawada
    J. Phys. Chem. B, 103, 4663-4665 (1999).
  14. Spectroscopic analysis of stimulated Raman scattering in the early stage of laser-induced breakdown in water
    H. Yui, Y. Yoneda, T. Kitamori, T. Sawada
    Phys. Rev. Lett., 82, 4110-4113 (1999).
  15. Fast slab gel electrophoretic separation of DNA fragments with a short migration distance using thermal lens microscope
    JJ. Zheng, T. Odake, T. Kitamori, T. Sawada
    Anal. Sci., 15, 223-227 (1999).

1998

  1. Multiple-Channel Fluorescence Detector Using Optical Fiber Delay Lines for Variable Observation Angle Fluorescence Spectroscopy under Normal Incidence Conditionv
    Takuya SHIMOSAKA, Takehiko KITAMORI and Tsuguo SAWADA
    Appl. Spectrosc., 52, 308-311 (1998).
  2. Photothermal Effect of Single Ultrafine Particle and Individual Counting in Liquid
    Kazuma MAWATARI, Takohiko KITAMORI, and Tsuguo SAWADA
    Anal. Chem., 70(23), 5037-5041 (1998).
  3. Density and Viscosity at Liqiod-Liquid Interface Region Studied by Quasi-Elastic Laser Scattering Method
    Isao TSUYUMOTO, Naohei NOGUCHI, Takehiko KITAMORI and Tsuguo SAWADA
    J. Phys. Chem. B, 102(15), 2684-2687 (1998).
  4. Monitoring of Molecular Transport at Liquid-Liquid Interface of Chemical Oscillation System by Time-Resolved Quasi-Elastic Laser Scattering Method
    Satoshi TAKAHASHI, Isao, TSUYUMOTO, Takehiko KITAMORI, Tsuguo SAWADA
    Electrochim. Acta, 44(1), 165-169 (1998).
  5. Observation of the Dynamic and Collective Behavior of Surfactant Molecules at a Water/Nitrobenzene Interface by a Time-Resolved Quasi-Elastic Laser-Scattering Method
    Z.-H. ZHANG, Isao TSUYUMOTO, Takehiko KITAMORI, Tsuguo SAWADA
    J. Phys. Chem. B, 102(50), 10284-10287 (1998).

解説

1986-1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2016 2017 2020 2021 2022

In press

2022

  1. Photothermal spectroscopy and micro/nanofluidics
    Hisashi Shimizu, Chihchen Chen, Yoshiyuki Tsuyama, Takehiko Tsukahara,
    and Takehiko Kitamori
    Journal of Applied Physics, 132, 060902 (2022)

2021

  1. Review of ultrasensitive readout for micro-/nanofluidic devices by thermal lens microscopy
    Chihchen Chen, Hisashi Shimizu, and Takehiko Kitamori
    J. of Optical Microsystems, 1, 020901(13pp), (2021).

2020

  1. Advances in Label-Free Detections for Nanofluidic Analytical Devices
    Thu Hac Huong Le, Hisashi Shimizu, Kyojiro Morikawa
    Micromachines, 11, 885(21pp), (2020).

2017

  1. Extended-nano chromatography
    Hisashi Shimizu, Adelina Smirnova, Kazuma Mawatari, Takehiko Kitamori
    Journal of Chromatography A, 1490,11-20(2017)

2015

  1. マイクロELISAによる患者の微量検体の分析法
    森絵美, 細谷弓子, 今井靖, 大橋俊則, 田澤英克, 馬渡和真, 森田啓行, 北森武彦
    分析化学, Vol.64, No.6,pp461-468(2015)
  2. 流体流路の階層サイズ構造とバイオデバイスへの応用
    北森 武彦, 馬渡 和真, 嘉副 裕
    応用物理, Vol.84, No.10,pp882-888(2015)
  3. NMR分光法で見る拡張ナノ空間内における水及び非水溶媒の分子構造とダイナミクス
    塚原 剛彦, 森川 響二朗, 馬渡 和真, 北森 武彦
    分析化学, Vol.64, No.4,pp261-271(2015)

2014

  1. Extended-nanofluidics: Fundamental Technologies, Unique liquid properties, and Application in Novel Chemical and Bio Analysis Methods and Devices
    K.Mawatari, Y.Kazoe, Y.Pihosh, H.Simizu, T.Kitamori
    Analytical Chemistry, 86(9) (cover),4068-4077(2014)
  2. Thermal Lens Microscopy as a Detector in Microdevices
    C.Cassano, K.Mawatari, T.Kitamkori, H.Fan,
    Electrophoresis, 35(16),2279-2291(2014)
  3. 拡張ナノ空間を用いたaL-fL高機能分析デバイスの開発
    馬渡和真、北森武彦
    生体の科学, 65(2),127-132 (2014)

2013

  1. 拡張ナノ流路における流速分布計測法の開発
    嘉副裕、井関恵三、馬渡和真、北森武彦
    ナノ学会会報, 12(2013)

2012

  1. 分子とバルク空間を繋ぐ空間(拡張ナノ空間)における溶液物性・化学反応
    馬渡 和真,北森 武彦
    展望とトピックス(第72回分析化学討論会), 17(2012)
  2. マイクロ・拡張ナノ流体システムと新規エネルギーデバイスへの応用
    馬渡 和真,Le Hac Huong Thu,Pihosh Yuriy,北森 武彦
    オプトロニクス, 31, 363(2012)
  3. Microchip-based cellular biochemical systems for practical applications and fundamental research: from microfluidics to nanofluidics
    Yan Xu, Kihoon Jang, Tadahiro Yamashita, Yo Tanaka, Kazuma Mawatari, Takehiko Kitamori
    Analytical and Bioanalytical Chemistry, 402(1), 99-107(2012)

2011

  1. マイクロガス分析システムの開発と大気超微量アンモニアへの応用
    比企伸一郎, 馬渡和真, 北森武彦
    ケミカルエンジニヤリング, 第57巻, 第7号, 26-32(2011)
  2. Microflow Systems for Chemical Synthesis and Analysis: Approaches to Full Integration of Chemical Process
    K. Mawatari, Y. Kazoe, A. Aota, T. Tsukahara, K. Sato, T. Kitamori
    Journal of Flow Chemistry , 1, 3-12(2011)
  3. 熱レンズ顕微鏡を用いた非蛍光性生体試料の超高感度計測
    比企伸一郎, 清水久史, 馬渡和真, 北森武彦
    光学, 40(5), 208-215(2011)
  4. マイクロ・ナノ化学システム
    山本竜広、嘉副裕、馬渡和真、北森武彦
    有機合成化学協会誌, , 69, 526-533(2011)
  5. Extended nanospace chemical systems on a chip for new analytical technology
    K.Mawatari, T.Tsukahara, T.Kitamori
    Analyst, 136, 3051-3059(2011).

2010

  1. Extended-nano Fluidic Systems for Analytical and Chemical Technologies
    Kazuma Mawatari, Takehiko Tsukahara, Yasuhiko Sugii, and Takehiko Kitamori
    Nanoscale, 2, 1588-1595 (2010).
  2. Integrated Extended-nano Chemical Systems on a Chip
    Takehiko Tsukahara, Kazuma Mawatari, and Takehiko Kitamori
    Chemical Society Reviews, 39, 1000-1013(2010).

2009

  1. Parallel Multiphase Microflows: Fundamental Physics, Stabilization Methods and Its Applications
    Arata Aota, Kazuma Mawatari, and Takehiko Kitamori
    Lab on a Chip, 9, 2470-2476 (2009).
  2. Padlock/RCA法を用いた単一DNA検出法の展開
    佐藤香枝
    化学と工業, 62-10, 1070-1072 (2009).
  3. Integrated fluidic systems on a nanometer scale and the study on behavior of liquids in small confinement
    Akihide Hibara, Takehiko Tsukahara, Takehiko Kitamori
    Journal of Chromatography A, 1216, 673-683 (2009).
    (Published on the Web: December 9, 2008)
  4. Combining microchip and cell technology for the creation of novel biodevices
    Kae Sato, Yo Tanaka, Björn Renberg and Takehiko Kitamori
    Analytical and Bioanalytical Chemistry, 393(1), 23-29 (2009).

2008

  1. Microchip-based cell analysis and clinical diagnosis system
    Kae Sato, Kazuma Mawatari and Takehiko Kitamori
    Lab Chip, 8(12), 1992-1998 (2008).
  2. 拡張ナノ空間の物性と分析化学への応用
    塚原剛彦,馬渡和真,北森武彦
    ぶんせき,9月号,454-458 (2008).
  3. 細胞集積化マイクロ・ナノ化学チップ
    佐藤香枝,田中陽,北森武彦
    分子細胞治療7(1),3-9 (2008).
  4. マイクロ多相流を利用する溶媒抽出法
    青田新, 北森武彦
    分析化学57(4),239-250 (2008).

2007

  1. フォトサーマル分光
    馬渡和真,北森武彦
    化学会レポート分析化学会ディビジョン(日本化学会)
  2. Biological cells on microchips: New technologies and applications
    Yo Tanaka, Kae Sato, Tatsuya Shimizu, Masayuki Yamato, Teruo Okano, Takehiko Kitamori
    Biosensors and Bioelectronics, 23(4), 449-458 (2007).
  3. 光熱変換分光法
    馬渡和真,北森武彦
    ぶんせき進歩総説,7月号,350-355 (2007).

2006

  1. Functional thermal lens microscopes for ultrasensitive analysis of non-fluorescent molecules and microchip chemistry
    Takehiko Kitamori and Kazuma Mawatari
    Proceedings of SPIE, 6343, 63430C (2006).
  2. Ultrasensitive detection of nonfluorescent molecules in microspace
    Takehiko Kitamori and Kazuma Mawatari
    SPIE Newsroom, DOI: 10.1117/2.1200612.0471, (2006).
  3. 界面のはかりかた 光散乱および光熱変換現象を利用した液液界面のはかりかた
    火原彰秀,北森武彦
    ぶんせき,6月号,242-248 (2006).
  4. マイクロ化学チップテクノロジーと原子力-再処理工程溶液分析への適用を目指して
    渡慶次学,池田泰久(東工大),北森武彦
    日本原子力学会誌48(1),38-43 (2006).
  5. 微量分析のためのNMR用デバイスの開発
    塚原剛彦
    ぶんせき,2月号,82 (2006).
  6. 熱レンズ顕微鏡による非蛍光性分子の超高感度検出
    馬渡和真,北森武彦
    臨床検査50(12) 2006年増刊号,1487-1499 (2006).

2005

  1. Continuous-flow chemical processing in three-dimensional microchannel network for on-chip integration of multiple reactions in a combinatorial mode
    Y. Kikutani, M. Ueno, H. Hisamoto, M. Tokeshi, T. Kitamori
    Qsar & Combinatorial Science, 24(6), 742-757 (2005).
  2. マイクロ化学システム
    北森武彦
    表面技術56(3), 126-131 (2005).
  3. 酸化チタン薄膜を集積化したマイクロチャネルチップを用いた光触媒反応
    竹井豪,北森武彦,金幸夫
    化学と工業58(2),147-149 s(2005).
  4. 集積化ガラスチップ
    渡慶次学,菊谷善国
    表面技術56(3),132-137 (2005).
  5. 液液マイクロ多相流
    火原彰秀,北森武彦
    混相流19(1),16-24 (2005).
  6. マイクロチャネル内気液二相流を利用した化学プロセス
    渡慶次学,北森武彦
    混相流19(1),25-30 (2005).
  7. マイクロ化学バイオチップ入門
    北森武彦,田中有希
    応用物理74(5),623-627 (2005).
  8. マイクロバイオシステム
    佐藤香枝,佐藤記一,北森武彦
    ケミカルエンジニヤリング50(5),329-334 (2005).
  9. マイクロ化学
    上野雅晴,火原彰秀,北森武彦
    表面科学26(2),74-81 (2005).

2004

  1. Micro-flow reaction systems for combinatorial syntheses
    Y. Kikutani, T. Kitamori
    Macromolecular Rapid Communications, 25(1), 158-168 (2004).
    (2nd January 2004)
  2. Thermal lens microscopy and microchip chemistry
    T. Kitamori, M. Tokeshi, A. Hibara, K. Sato
    Analytical Chemistry, 76(3), 52A-60A (2004).
    (1st February 2004)
  3. Takehiko Kitamori – Profile
    T. Kitamori
    Lab on a Chip, 4(3), 23N-27N (2004).
  4. マイクロ空間を利用した化学―微小にするメリットとは?
    北森武彦, 上野雅晴
    化学59(2),66-67 (2004).
  5. 非蛍光物質の超高感度計測
    渡慶次学,馬渡和真,火原彰秀,北森武彦
    応用物理学会誌73(6),741-748 (2004).
  6. プレパラートが工場に! 集積化マイクロ化学システムの現状と展望
    上野雅晴,北森武彦
    月刊マテリアルステージ39(6),107-117 (2004).
  7. 熱レンズ顕微鏡
    火原彰秀,北森武彦
    化学59(8),42-43 (2004).
  8. 単一分子計測法
    馬渡和真,渡慶次学,北森武彦
    ぶんせき,506-512 (2004).
  9. 熱レンズ顕微鏡
    馬渡和真,比企伸一郎,福澤隆,山口淳,服部明彦,渡慶次学,北森武彦
    光学33(12),708-714 (2004).
  10. マイクロチップで細胞を健全に飼う
    田中有希,佐藤記一,北森武彦
    高分子,872-875 (2004).

2003

  1. Integrated chemical systems on microchips for analysis and assay. Potential future, mobile high-performance detection system for chemical weapons
    Kikutani Y, Tokeshi M, Sato K, Kitamori T
    Pure and Applied Chemistry, 74, 2299-2309 (2003).
    (No. 12, December 2002)
  2. Integration of Chemical and Biochemical Analysis Systems into a Glass Microchip
    Kiichi Sato, Akihide Hibara, Manabu Tokeshi, Hideaki Hisamoto and Takehiko Kitamori
    Analytical Sciences, 19, 15-22 (2003).
    (No. 1, January 2003)
  3. Microchip-Based Chemical and Biochemical Analysis Systems
    Kiichi Sato, Akihide Hibara, Manabu Tokeshi, Hideaki Hisamoto and Takehiko Kitamori
    Advanced Drug Delivery Reviews, 55, 379-391 (2003).
    (Issue 3, 24 February 2003, Available on Web 01/10/2003)
  4. Chemical Processing on Microchips for Analysis, Synthesis, and Bioassay
    Manabu Tokeshi, Yoshikuni Kikutani, Akihide Hibara, Kiichi Sato, Hideaki Hisamoto, Takehiko Kitamori
    Electrophoresis, 24, 3583-3594 (2003)
  5. ミクロ空間における分子輸送と溶媒抽出―マイクロ化学システムの鍵―
    久本秀明,渡慶次学,火原彰秀,北森武彦
    イオン交換学会誌,2003,14(1),38-43.
    (2003年1月)
  6. マイクロ化学システム
    渡慶次学,火原彰秀,北森武彦
    計測と制御42,29-32 (2003).
    (2003年1月)
  7. 化学・バイオプロセスと集積化したマイクロバイオ化学システム
    森島圭祐,北森武彦
    OHM90(1), (2003).
    (2003年1月)
  8. オンチップセパレーション
    火原彰秀,北森武彦 バイオマテリアル―生体材料―,21(2),120-126 (2003).
    (2003年3月)
  9. チップ内マルチイオンセンシングを目指したセグメントフロー―多相流形成の基礎検討
    久本秀明,堀内隆之,火原彰秀,渡慶次学,北森武彦
    電気学会誌123-E(4) 124-127 (2003).
    (2003年4月)
  10. マイクロチップを用いる有機合成
    久本秀明,菊谷善国,北森武彦
    触媒45(3),252-256 (2003).
    (2003年4月)
  11. マイクロチップ分析システム
    渡慶次学,北森武彦
    化学工業56,44-50 (2003).
  12. 吉と出るか凶と出るか―マイクロ化に向かうラボとプラント―
    北森武彦
    日立プラント技報23,(2003).
  13. マイクロチップを用いたイムノアッセイシステム
    渡慶次学,佐藤記一,北森武彦
    バイオサイエンスとインダストリー7,449-454 (2003).
  14. 世界と我が国のマイクロ化学プロセスの動向
    北森武彦
    化学装置,(2003).
  15. マイクロ化学チップの研究開発動向
    北森武彦
    Hitachi Scientific Instrument News1 (2003).
  16. インテグレーテッド・ケミストリー―世界の動向とプロジェクトの戦略・展開―
    北森武彦
    ファインケミカル (2003年9月15日特集号).
  17. マイクロチップ化学プロセスの基盤技術の構築
    渡慶次学
    ファインケミカル (2003年9月15日特集号).
  18. マイクロ合成化学システムの構築
    菊谷善国
    ファインケミカル (2003年9月15日特集号).
  19. マイクロ生化学分析システムの構築
    佐藤記一
    ファインケミカル (2003年9月15日特集号).
  20. マイクロ膜化学システムの構築
    久本秀明
    ファインケミカル (2003年9月15日特集号).
  21. マイクロ電気化学システムの構築
    金幸夫
    ファインケミカル (2003年9月15日特集号).
  22. バイオマイクロシステムの開発
    森島圭祐
    ファインケミカル (2003年9月15日特集号).
  23. メソ空間化学の研究
    火原彰秀
    ファインケミカル (2003年9月15日特集号).
  24. マイクロチップ技術のバイオサイエンスへの応用
    佐藤記一,北森武彦
    蛋白質核酸酵素11,1595-1601 (2003).
  25. 次世代集積化マイクロ化学システム
    渡慶次学,菊谷善国,北森武彦
    ケミカルエンジニアリング49,6-12 (2003).

2002

  1. マイクロチップにおける検出法とマイクロ分析システム
    渡慶次学,久本秀明,北森武彦
    計装45,21-24 (2002).
  2. マイクロ化学システム ―化学実験はマイクロチップで
    渡慶次学
    化学と工業55,121-124 (2002).
  3. High-Speed Assay on the Way
    Takehiko Kitamori, Kiichi Sato
    Look Japan, 48(554), 30-31 (2002).
  4. 集積化ミクロ化学システム
    金幸夫,北森武彦
    マテリアルインテグレーション15(2),-,(2002).
  5. 化学システムのミクロ集積化とインテグレーテッドケミストリー
    北森武彦,菊谷善国
    未来材料2(2),18-25 (2002).
  6. セナとサイトウ・キネンに学ぼう
    北森武彦
    JAIMA SEASON87,4-5 (2002).
  7. コスト・時間・スペースをとらないミクロ実験室
    北森武彦
    ばんぶう,54-57 (2002).
  8. マイクロチップ抽出場の創製からマイクロチップ化学へ
    渡慶次学,火原彰秀,久本秀明,北森武彦
    ぶんせき,(5),257-262 (2002).
  9. マイクロ化学チップ
    北森武彦,菊谷善国
    高圧ガス 39(4),313 (2002).
  10. マイクロ化学システム
    北森武彦
    現代化学376,14-20 (2002).
  11. 「マイクロリアクタ設計工学」確立に向けて―現在の課題と今後―
    北森武彦,渡慶次学,菊谷善国
    化学装置44,42-48 (2002).
  12. マイクロ化学システム―集積化化学実験室―
    渡慶次学,北森武彦
    化学と教育50,674-677 (2002).
  13. マイクロチップイムノアッセイ
    北森武彦,渡慶次学,佐藤記一
    KAST Report14,8-15 (2002).
  14. 分析システムのマイクロチップへの集積化
    佐藤記一,田中有希,北森武彦
    次世代センサ12,(2002).

2001

  1. イムノアッセイマイクロチップの開発
    佐藤記一,木村博子,北森武彦
    バイオインダストリー18,27-33 (2001).
  2. マイクロチップ分析システムを用いた超微量物質の超高感度・高速分析
    渡慶次学,佐藤記一,木村博子, 北森武彦
    Biomedical Research on Trace Elements12,85-90 (2001).
  3. Integration Chemistry for Bio-chip: Integration of immunoassay and bio-chemical lab on a chip
    Manabu Tokeshi, Kiichi Sato, and Takehiko Kitamori
    RIKEN Review36, 24-25 (2001).
  4. 熱レンズ顕微鏡
    火原彰秀,渡慶次学,北森武彦
    光技術コンタクト449,20-27 (2001).
  5. 単一DNA分子によるスクリーニング ―PCRはもういらない
    渡慶次学
    化学と工業54,819 (2001).
  6. 次世代の分析・計測技術 ―マイクロチップ分析システム―
    渡慶次学,内山堅慈,Maxim N. Slyadnev,菊谷善国
    機械振興395,32-41 (2001).
  7. 化学反応場としてのマイクロ化学チップ ―マイクロ化学プラントへの技術と展望―
    金幸夫,久本秀明,佐藤記一,火原彰秀
    機械振興395,42-49 (2001).
  8. 複合化学プロセスのマイクロチップ集積化
    火原彰秀,渡慶次学,北森武彦
    Electrochemistry (電気化学および工業物理化学)69,620-623 (2001).
  9. マイクロ分析システム
    佐藤記一,久本秀明,渡慶次学,木村博子,北森武彦
    BME15(10),24-30 (2001).
  10. Miniaturization and chip technology in analytical chemistry
    Takehiko Kitamori
    Fresenius’ Journal of Analytical Chemistry, 371(2), 89-90 (2001).
  11. Thermal lens microscope for integrated chemistry laboratory on glass microchips
    Akihide Hibara, Kiichi Sato, Hideaki Hisamoto, Kenji Uchiyama, Maxim N. Slyadnev, Manabu Tokeshi, Takehiko Kitamori
    Progress in Natural Science, 11 Suppl., S237-S241 (2001).
  12. マイクロチップイムノアッセイシステム
    佐藤記一,北森武彦
    Molecular Electronics and Bioelectronics12,217-226 (2001).

2000

  1. 集積化したミクロ化学実験室 ―生体分子の検出と電気化学への期待―
    渡慶次学,北森武彦
    電気化学および工業物理化学68,192-196 (2000).
  2. 化学実験装置をマイクロチップに集積化する技術のもたらすもの
    渡慶次学,北森武彦
    KAST Report11,18-25 (2000).
  3. 免疫分析チップ
    佐藤記一,北森武彦
    Medical Technology28,101-102 (2000).
  4. イムノアッセイシステムのマイクロチップへの集積化
    佐藤記一,渡慶次学,木村博子,北森武彦
    生物物理化学44,73-77 (2000).
  5. 熱レンズ顕微鏡による非蛍光生単一分子計測
    佐藤記一,渡慶次学,火原彰秀,北森武彦
    生物物理230,262-265(2000).
  6. インテグレーテッド・ケミストリー ―化学システムの集積化の現状―
    渡慶次学,北森武彦
    溶接学会誌69,24-26 (2000).
  7. 一分子を測る
    火原彰秀,渡慶次学,北森武彦
    ぶんせき,591-596 (2000).
  8. マイクロチップに集積化した化学システム―液相微小空間に期待する効果とは?―
    久本秀明,北森武彦
    ペトロテック18,924-927 (2000).

1999

  1. レーザー誘起キャピラリー振動法によるDNA断片の高感度検出
    小竹玉緒,北森武彦
    精密工学会誌,181-185 (1999).
  2. 熱レンズ顕微鏡と非発光性分子の単一分子定量
    北森武彦
    蛋白質・核酸・酵素44,1527-1531 (1999).
  3. Ultrasensitive on-column detection of capillary electrophoresis using laser-induced capillary vibration method
    Tamao Odake, Takehiko Kitamori, Tsuguo Sawada
    ANALUSIS, 26, M41 (1998).
  4. 化学研究はマイクロチップの上で!
    北森武彦
    化学54,14-19 (1999).

1998

  1. 化学実験の集積化とナノ流体輸送
    渡慶次学,北森武彦,澤田嗣郎
    化学53,74-75 (1998).
  2. 分子一つを測る
    北森武彦
    化学と教育46,228-229 (1998).
  3. 光熱変換分光法 ―生体関連物質の高感度分析への応用―
    小竹玉緒,北森武彦,澤田嗣郎
    現代化学331,16-22 (1998).
  4. 熱レンズ顕微鏡
    北森武彦
    ぶんせき,847-853 (1998).

1986-1997

  1. 光音響分光法による液体試料の超高感度比色分析
    北森武彦,鈴木一道,澤田嗣郎,合志陽一
    The Hitachi Scientific Instruments News, 29, 1-4 (1986).
  2. 光音響分光法による液中微粒子・超微粒子の分析
    澤田嗣郎,北森武彦
    表面6,738-746 (1988).
  3. クリーンルーム及びユーティリティのクリーン度評価
    斉木篤,三井泰裕,北森武彦,八掛保夫
    セミコンダクタ・ワールド11,150-159 (1988).
  4. 光音響免疫分析法 -新たな超高感度免疫分析法-
    澤田嗣郎,北森武彦
    Bio-medica, 4, 41-46 (1989).
  5. 光音響分光法による免疫分析
    北森武彦,澤田嗣郎
    Medical Technology, 17, 519-520 (1989).
  6. 光音響効果を用いた免疫センサ
    澤田嗣郎,北森武彦
    センサ技術9,75-78 (1989).
  7. 超微量分析の変革と展望 -超高感度光音響分光分析の新たな展開-
    北森武彦
    化学と工業42,220-224 (1989).
  8. 光音響分光法による液中超微粒子計測
    北森武彦,澤田嗣郎
    日本原子力学会誌31,558-559 (1989).
  9. レーザブレイクダウン音響法による液中超微粒子計測
    坂上正治,北森武彦,澤田嗣郎
    高分子38,366 (1989).
  10. 光音響分光法を用いた超高感度免疫分析
    北森武彦,澤田嗣郎
    高分子38,427 (1989).
  11. 光音響分光法による懸濁試料の分析と免疫分析への応用
    北森武彦,坂上正治,澤田嗣郎
    The Hitachi Scientific Instruments News, 32, 9-12 (1989).
  12. 光音響法による純水計測
    澤田嗣郎,北森武彦
    超音波テクノロジー1,40-44 (1989).
  13. 液中超微粒子計測
    北森武彦,澤田嗣郎
    オプトロニクス11,138-142 (1989).
  14. 光音響免疫分析法
    北森武彦,澤田嗣郎
    日本臨床47,2818-2823 (1989).
  15. レーザーブレイクダウン音響分光法による液中超微粒子計測
    北森武彦,澤田嗣郎
    化学工学54,111-113 (1990).
  16. 超微量分析にみる「超」概念の変遷
    北森武彦,澤田嗣郎
    化学46,179-181 (1991).
  17. Novel Analytical and Chemometric Applications of Photothermal Spectroscopy
    Takehiko KITAMORI and Tsuguo SAWADA
    Spectrochimica Acta Rev., 14, 275-302 (1991).
  18. PUREXプロセスにおけるNpイオン分析技術のためのレーザー誘起光音響分光システムの開発
    木原武弘,藤根幸雄,前田 充,松井哲也,深沢哲夫,坂上正治,池田孝志,北森武彦
    JAERI-M レポート(日本原子力研究所),91-142,1-53 (1991).
  19. 光熱変換効果を利用する超微量分析
    北森武彦,澤田嗣郎
    化学工業43,113-120 (1992).
  20. 分析化学の科学
    北森武彦
    The Hitachi Scientific Instruments News, 35, 3616-3618 (1992).
  21. 光で超薄膜内の分子挙動を探る
    北森武彦,澤田嗣郎
    化学48,724-725 (1993).
  22. 光熱変換分光分析法
    北森武彦,澤田嗣郎
    ぶんせき,178-187 (1994).
  23. 化学反応の集積化
    北森武彦
    分光研究43,176-177 (1994).
  24. 水の精製と計測
    北森武彦,斉藤恭一
    ぶんせき,808-812 (1994).
  25. 微量分析化学からみた高純度
    北森武彦
    化学工学59,301-305 (1995).
  26. レーザー分光法による生体成分の超微量分析
    北森武彦,澤田嗣郎
    ファルマシア(日本薬学会誌)31,1138-1142 (1995).
  27. 光熱変換分光法の現状
    北森武彦
    超音波テクノ7,12-17 (1995).
  28. 究極の超微量分析―検出限界に限界はあるか?―
    北森武彦
    化学50,661-664 (1995).
  29. 検出限界
    北森武彦 分担執筆
    ぶんせき,924-933 (1995).
  30. 高純度の世界と測定<限りなく純粋に近い液体の分析技術>
    北森武彦
    クリーンテクノロジー,23-26 (1996).
  31. レーザー光熱変換分光法を用いる超微量免疫測定
    木村博子,北森武彦,澤田嗣郎
    ぶんせき,280-284 (1997).
  32. 分子を数える
    馬渡和真,佐藤清,北森武彦,澤田嗣郎
    日本機械学会誌100,(1997).

書籍

2003~ 1988-1997

2003~

  1. マイクロ・拡張ナノ化学デバイス
    森川響二朗、北森武彦
    2020版 薄膜作製応用ハンドブック, 第4編7章4節1項, p1428-1432, (株)エヌ・ティー・エス, (2020)
  2. 震災後の工学は何をめざすのか
    第1章

    北森武彦
    東京大学大学院工学系研究科編, 内田老鶴圃,2012
  3. 震災後の工学は何をめざすのか
    第6章第1節
    第6章第2節

    馬渡和真
    東京大学大学院工学系研究科編, 内田老鶴圃,2012
  4. マイクロ流体デバイスによる生体情報センシングおよび臨床検査分析
    馬渡和真、北森武彦
    先端バイオマテリアルハンドブック、(株)エヌ・ティー・エス, 2012
  5. Extended-nano Fluidic Systems for Chemistry and Biotechnology
    K. Mawatari, T. Tsukahara, Y. Tanaka, Y. Kazoe, P. Dextras, T. Kitamori
    Imperial College Press, 2011
  6. Micro- and Nanofluidics
    Arata Aota, Takehiko Kitamori
    in “Handbook of Nanofabrication” Ed. Stefano Cabrini and Satoshi Kawata, CRC / Taylor & Francis (2011), in press
  7. Micro Unit Operations and Continuous Flow Chemical Processing
    Arata Aota, Takehiko Kitamori
    in “Micro Systems and Devices for (Bio)chemical Processes, Advances inChemical Engineering 38” Ed. Jaap C. Schouten, Academic Press (2010)
  8. 研究室マネジメント入門 人・資金・安全・知財・倫理
    1 研究室における人とお金のマネジメント

    北森武彦
    丸善株式会社(2009年4月23日発行)
  9. マイクロ・ナノ化学チップと医療・環境・バイオ分析
    第1編 マイクロ化学チップ研究開発の現状と展望

    馬渡和真,北森武彦
    株式会社エヌ・ティー・エス(2009年1月23日発行)
  10. マイクロ・ナノ化学チップと医療・環境・バイオ分析
    第2編 マイクロ化学チップの動作と原理
    第1章 マイクロ化学チップの特性と動作性

    渡慶次学
    株式会社エヌ・ティー・エス(2009年1月23日発行)
  11. マイクロ・ナノ化学チップと医療・環境・バイオ分析
    第2編 マイクロ化学チップの動作と原理
    第4章 流体制御

    火原彰秀
    株式会社エヌ・ティー・エス(2009年1月23日発行)
  12. マイクロ・ナノ化学チップと医療・環境・バイオ分析
    第2編 マイクロ化学チップの動作と原理
    第5章 表面修飾

    金幸夫
    株式会社エヌ・ティー・エス(2009年1月23日発行)
  13. マイクロ・ナノ化学チップと医療・環境・バイオ分析
    第3編 材料微細加工技術
    第5章 ナノ加工

    塚原剛彦
    株式会社エヌ・ティー・エス(2009年1月23日発行)
  14. マイクロ・ナノ化学チップと医療・環境・バイオ分析
    第4編 検出
    第1章 レーザー・光検出

    馬渡和真
    株式会社エヌ・ティー・エス(2009年1月23日発行)
  15. マイクロ・ナノ化学チップと医療・環境・バイオ分析
    第5編 応用技術
    第1章 ナノテクノロジーを利用した超高性能DNA解析手法

    岡本行広,加地範匡,渡慶次学,馬場嘉信
    株式会社エヌ・ティー・エス(2009年1月23日発行)
  16. マイクロ・ナノ化学チップと医療・環境・バイオ分析
    第5編 応用技術
    第2章 マイクロ化学チップを用いたDNA増幅法

    佐藤香枝
    株式会社エヌ・ティー・エス(2009年1月23日発行)
  17. マイクロ・ナノ化学チップと医療・環境・バイオ分析
    第5編 応用技術
    第3章 生体分子固定化マイクロチップ

    加藤大
    株式会社エヌ・ティー・エス(2009年1月23日発行)
  18. マイクロ・ナノ化学チップと医療・環境・バイオ分析
    第5編 応用技術
    第4章 イムノアッセイ・バイオアッセイ

    佐藤記一
    株式会社エヌ・ティー・エス(2009年1月23日発行)
  19. マイクロ・ナノ化学チップと医療・環境・バイオ分析
    第5編 応用技術
    第7章 バイオマイクロアクチュエーター

    田中陽
    株式会社エヌ・ティー・エス(2009年1月23日発行)
  20. マイクロ・ナノ化学チップと医療・環境・バイオ分析
    第5編 応用技術
    第9章 多機能集積化学センシング

    久本秀明
    株式会社エヌ・ティー・エス(2009年1月23日発行)
  21. マイクロ・ナノ化学チップと医療・環境・バイオ分析
    第5編 応用技術
    第17章 拡張ナノ空間化学

    塚原剛彦
    株式会社エヌ・ティー・エス(2009年1月23日発行)
  22. マイクロ・ナノ化学チップと医療・環境・バイオ分析
    第6編 企業のアプローチ
    第1章 マイクロ免疫分析システム

    大橋俊則
    株式会社エヌ・ティー・エス(2009年1月23日発行)
  23. マイクロ・ナノ化学チップと医療・環境・バイオ分析
    第6編 企業のアプローチ
    第3章 大気中アンモニア分析

    八谷宏光
    株式会社エヌ・ティー・エス(2009年1月23日発行)
  24. 分析システムの集積化
    馬渡和真,北森武彦
    新しい地平をひらく分析手法の最前線(化学フロンティア),化学同人(2009年)
  25. Micro Total Analysis System
    Yuki Tanaka, Takehiko Kitamori
    in “Unconventional Nanopatterning Techniques and Applications.” Ed. J.A.Rogers, H.H.Lee, A John Wiley & Sons,Inc. (2009)
  26. Microchip Immunoassays
    Kiichi Sato, Takehiko Kitamori
    “Handbook of Capillary And Microchip Electrophoresis And Associated Microtechniques” Ed. James P. Landers, CRC / Taylor & Francis (2008)
  27. Solvent Extraction on Chips
    Manabu Tokeshi, Takehiko Kitamori
    “Handbook of Capillary And Microchip Electrophoresis And Associated Microtechniques” Ed. James P. Landers, CRC / Taylor & Francis (2008)
  28. Flow Analysis in Microfluidic Devices
    Manabu Tokeshi, Takehiko Kitamori
    in “Advances in Flow Analysis”
    Ed. M. Trojanowicz, Wiley & Sons,Inc. (2008)
  29. Detection using thermal lensing
    K.Mawatari and T.Kitamori
    in “Encyclopedia of Micro- and Nanofluidics,” D. Li (Ed.), Springer-Verlag:
    Berlin Heidelberg, in press (2008).
  30. 早わかりマイクロ化学チップ
    北森武彦
    丸善株式会社(2006年11月1日発行).
  31. 熱レンズ顕微鏡
    馬渡和真,北森武彦
    ナノバイオ大辞典(テクノシステム),pp. 403-404 (2006).
  32. マイクロ流体学
    火原彰秀,北森武彦
    ナノバイオ大辞典(テクノシステム),pp. 545-546 (2006).
  33. ミクロ相分離
    渡慶次学,北森武彦
    ナノバイオ大辞典(テクノシステム),pp. 551-552 (2006).
  34. New Horizons in Nano- and Micro-Biotechnology
    Meas. Sci. Technol., 17(12) (2006).
    Editorial; Takehiko Kitamori
  35. 熱レンズ顕微鏡とマイクロ化学チップ分析システム
    馬渡和真,北森武彦
    光科学研究の最前線,pp. 306-307 (2005)
  36. マイクロリアクタテクノロジー~限りない可能性と課題~
    第2章 1. 集積化ハイスループットシステムとしてのマイクロ化学システムの構築

    北森武彦・菊谷善国
    株式会社エヌ・ティー・エス(2005年7月発行)
  37. マイクロリアクタテクノロジー~限りない可能性と課題~
    第4章 6. マイクロチップを用いた環境粒子計測

    宮村和宏・馬渡和真
    株式会社エヌ・ティー・エス(2005年7月発行)
  38. マイクロリアクタテクノロジー~限りない可能性と課題~
    第4章 13. 化学反応高度分析のためのマイクロ化学チップ―熱レンズ分光分析装置の開発―

    渡慶次学
    株式会社エヌ・ティー・エス(2005年7月発行)
  39. 高分子材料・技術総覧
    第3編 第5章 第1節「バイオ・マイクロ化学チップ」

    田中有希・北森武彦
    (株)産業技術サービスセンター刊(2004年9月)
  40. 第5章 1. ラボオンチップ総論
    火原彰秀,北森武彦
    バイオチップの最新技術と応用
    シーエムシー出版(2004年6月発行)
  41. 第5章 2. バイオマイクロシステムの開発
    森島圭祐
    バイオチップの最新技術と応用
    シーエムシー出版(2004年6月発行)
  42. 第5章 4. 電極集積化マイクロチャネルチップ
    金幸夫
    バイオチップの最新技術と応用
    シーエムシー出版(2004年6月発行)
  43. コンビナトリアルテクノロジー
    ―明日を開く‘もの作り’の新世界―

    北森武彦・渡慶次学
    第2部 マイクロケミカルテクノロジー 第1章 マイクロチップケミストリー
    丸善株式会社(2004年7月)
  44. マイクロ化学チップの技術と応用
    編者 北森武彦,庄司習一,馬場嘉信,藤田博之
    執筆者 上野雅晴,金幸夫,佐藤記一,渡慶次学,火原彰秀,森島圭祐
    化学とマイクロ・ナノシステム研究会(2004年9月)
  45. マイクロ流路による微小バイオテクノロジー
    渡慶次学,佐藤記一,北森武彦
    ナノバイオエンジニアリングマテリアル
    フロンティア出版(2004年3月発行)
  46. 基礎化学コース 分析化学III 超微量分析
    梅沢善夫,木村博子,角田欣一,北森武彦,下田満哉,馬場嘉信
    丸善株式会社(2004)
  47. 第III部 展望編 4. マイクロリアクタにおける触媒 catalysis for microreactor
    上野雅晴,北森武彦
    触媒活用大事典
    工業調査会(2004年発行)
  48. 4章5節マイクロチップを用いる分析
    佐藤記一,北森武彦
    先端の分析法 ~理工学からナノ・バイオまで~
    エヌ・ティー・エス(2004年12月発行)
  49. 第1章 総論
    北森武彦
    インテグレーテッド・ケミストリー
    シーエムシー出版(2004年3月発行)
  50. 第2章 マイクロチップ化学プロセスの設計
    第3章 超高感度検出器

    渡慶次学
    インテグレーテッド・ケミストリー
    シーエムシー出版(2004年3月発行)
  51. 第5章 マイクロ流体
    火原彰秀
    インテグレーテッド・ケミストリー
    シーエムシー出版(2004年3月発行)
  52. 第6章 マイクロ分析化学システム
    久本秀明,渡慶次学,佐藤記一
    インテグレーテッド・ケミストリー
    シーエムシー出版(2004年3月発行)
  53. 第7章 マイクロ化学合成システム
    菊谷善国
    インテグレーテッド・ケミストリー
    シーエムシー出版(2004年3月発行)
  54. 第8章 細胞実験システムの集積化
    佐藤記一,森島圭祐
    インテグレーテッド・ケミストリー
    シーエムシー出版(2004年3月発行)
  55. 第9章 マイクロ電気化学システムの構築
    金幸夫
    インテグレーテッド・ケミストリー
    シーエムシー出版(2004年3月発行)
  56. 第10章 マイクロ・メソ空間の物理化学
    火原彰秀
    インテグレーテッド・ケミストリー
    シーエムシー出版(2004年3月発行)
  57. マイクロ・バイオ化学システム
    北森武彦,火原彰秀
    ナノバイオテクノロジーの最前線
    シーエムシー出版(2003年10月発行)
  58. 6.1 集積化マイクロ化学システム
    金幸夫,北森武彦,火原彰秀
    ナノテクノロジー大事典
    工業調査会(2003)
  59. 次世代基盤技術 ナノ・マイクロテクノロジー
    金幸夫,渡慶次学
    化学便覧応用化学編I 第6版,丸善株式会社(2003年)
  60. マイクロ・ナノスケールの化学
    北森武彦
    ナノテクノロジーハンドブックI編 創る(第1分冊)
    オーム社,平成15年5月25日発行(2003年)
  61. マイクロ分析チップ
    渡慶次学
    ナノテクノロジーハンドブックIV編 バイオ・化学へ使う(第4分冊)
    オーム社,平成15年5月25日発行(2003年)
  62. ナノ・マイクロテクノロジーと分析・計測技術
    金幸夫
    ナノテクノロジーハンドブックIV編 バイオ・化学へ使う(第4分冊)
    オーム社,平成15年5月25日発行(2003年)
  63. マイクロバイオリアクター
    久本秀明
    ナノテクノロジーハンドブックIV編 バイオ・化学へ使う(第4分冊)
    オーム社,平成15年5月25日発行(2003年)
  64. 4節 バイオデバイス 3. マイクロ化学デバイス
    佐藤記一,北森武彦
    21世紀版 薄膜作製応用ハンドブック,エヌ・ティー・エス(2003年4月出版)
  65. 基礎科学コース 生命化学II 遺伝子の働きとその応用
    渡辺公綱,姫野俵太 共著,井上晴夫,北森武彦,小宮山真,高木克彦,平野眞一 編
    丸善株式会社(2003)
  66. Micro Chemical Processing on Microchips
    Yoshikuni Kikutani, Takehiko Kitamori
    Electrokinetic Phonomena, 253-275 (2003)
  67. Micro Integrated Chemical Systems for General Use
    Yoshikuni Kikutani, Akihide Hibara, Hideaki Hisamoto, Manabu Tokeshi, Takehiko Kitamori
    Lab-on-a-Chip: Miniaturized Systems for (Bio)Chemical Analysis and Synthesis, Eds., R.E.Oosterbrock and A. van den Berg, Elsevier, (2003).

1988-1997

  1. 光熱変換分光法の基礎と応用
    北森武彦,共著
    学会出版センター,東京(1997)
  2. 高純度化のための分析技術
    北森武彦,分担執筆
    「光音響分光法」
    「光熱変換分光法」
    フジテクノシステム,東京(1996)
  3. 分析化学データブック
    北森武彦,分担執筆
    「光源(レーザー)」
    丸善,東京,122-124(1993)
  4. 表面分析図鑑
    北森武彦,分担執筆
    「光音響分光法」
    丸善,東京,52-53 (1993)
  5. レーザー分光計測の基礎と応用
    北森武彦,分担執筆
    「レーザー散乱法」
    「微弱信号測定法」
    Industrial Publishing & Consulting,東京,301-326, 527-554 (1992)
  6. 光センサ・テクノロジー集
    北森武彦,澤田嗣郎,分担執筆
    「粒径計測法」
    オプトロニクス社,東京,141-145 (1990)
  7. 半導体プロセス・デバイス計測技術
    北森武彦,分担執筆
    「クリーン度の評価法」
    プレスジャーナル,東京,175-184 (1990)
  8. Physical Acoustics Vol. 18
    Tsuguo SAWADA and Takehiko KITAMORI
    “Analytical Applications of Photoacoustic Spectroscopy to Condensed Phase”
    Academic Press, New York, 347-401 (1988)

特許等

準備中です。